
codescene.com@AdamTornhill

Socio-Technical Smells:

How Technical Problems Cause Organizational Friction

@AdamTornhill

Is source code hard to understand?

Why Software is Hard

…imagine millions lines of
code, created by hundreds of
developers over several years.

codescene.com@AdamTornhill

Socio-Technical Smell #1:

The Overcrowded System

@AdamTornhill Generated via https://arthurbeaulieu.github.io/ORlyGenerator/

https://arthurbeaulieu.github.io/ORlyGenerator/

The Mythical Man-Month
Brooks’s Law:

Adding people to a late software project makes it later.

Time to completion

@AdamTornhill

@AdamTornhill

Rescuing a Death March

Scope with Brooks’s Law in Mind
Ti

m
e

to
 re

le
as

e

People on the project

Option #1: shrink the organization to fit
the modularity of the work to be done.

Ti
m

e
to

 re
le

as
e

People on the project

Option #2: re-design/architect to
accommodate more work in parallel

expand

A Coordination Bottleneck?

@AdamTornhill

The Tragedy of Software Design:

The Organisation that builds the System is Invisible in the Code itself

@AdamTornhill

@AdamTornhill

What is a Behavioral Code Analysis?

“While the code is important, it’s even more important to understand how we

— as a development organisation — interact with the system we’re building.” 

 — Software Design X-Rays, 2018

codescene.com@AdamTornhill

Socio-Technical Smell #2:

Coordination Bottlenecks in the Code

Android

iOS

Web

REST

...

@AdamTornhill

The more developers working on the same code,
the harder to maintain stable mental models

Mental ModelReality

@AdamTornhill

Social Factors Influence how we Perceive a Codebase

Watch out:

a poor socio-technical fit invalidates our mental models

Software is rarely built in isolation

@AdamTornhill

Discover Coordination in Code:

Collecting the Evidence

@AdamTornhill

commit 796d31809b3683083d3b62ccbab4f00dec8ffb1f

Author: David Lightman

Date: Fri Aug 12 13:27:53 2022 -0700

 Support multiple grades of fuel (small fix, right).

402 2 src/detectors/FuelGradeDetector.cs

1 0 src/engine/FuelInjector.cs

commit 32baab38f8f48f629ccd3f7564251b91dc2d777d

Author: Stephen Falken

Date: Thu Aug 11 23:04:45 2022 -0400

 Increase the pressure to use the fuel more efficiently.

12 5 src/engine/FuelInjector.cs

1270 0 test/engine/FuelInjectionTest.cs

David has modified the
FuelInjector file…

A file modified by
multiple authors.

..and so has Stephen.

Coordination Analysis:

How many authors have touched each file?

@AdamTornhill

file, n-authors, n-commits

build/builder.py, 13, 38

io/AsyncSSLSocketTest.cpp, 12, 15

io/AsyncSocketTest2.cpp, 10, 17

folly/AsyncSSLSocket.cpp, 9, 10 
...

Git analytics via Code Maat https://github.com/adamtornhill/code-maat

https://github.com/adamtornhill/code-maat

Case study:

Visualizing Coordination Bottlenecks in Folly

@AdamTornhill https://github.com/facebook/folly

Enclosure diagram: a hierarchical
structure that follows the structure of
the source code.

Each file is visualized as a coloured circle:

• Size: lines of code in that file.

• Color: author density

One author
Low
Medium
High

Author density

Case study:

Visualizing Coordination Bottlenecks in Folly

@AdamTornhill

One author
Low
Medium
High

Author density

58 (!) authors contributing to the
same piece of code.

Explore the Technical Root Cause of Excess Coordination

@AdamTornhill

A tiny fragment of AsyncSSLSocket.cpp — the class
has more than 100 functions of similar complexity:

Heuristic: a comment block close
to a special case — denoted by an
if-statement — indicates a
separate responsibility which
would be better expressed in its
own function.

Notice how multiple chunks of
Deep Nested Logic work to form
the Bumpy Road code smell.
Cognitively challenging.

Meet the God Class

A God Class is a design smell used to describe classes
which compulsively collect responsibilities and contain
complex logic.

Consequence: God Classes centralizes the behavior of
the system, which impacts the organizational dynamics.

God Classes are the Traffic Jams of the Software World

@AdamTornhill

☠ Cognitive Consequences of Developer Congestion

God Classes force programmers working on independent features
into the same parts of the code, making it virtually impossible to
maintain effective mental models.

Cohesion is a fundamental property for
scaling the people side of code

@AdamTornhill

“The gaps between the computed coordination requirements and the actual

coordination activities had major implications on software failures.”

 Cataldo, M., & Herbsleb, J. D. (2012).

 Coordination breakdowns and their impact on development  
 productivity and software failures.

God Class in the Hibernate ORM

Interactive visualization: https://codescene.io/projects/29298/jobs/
594242/results/code/hotspots/system-map

Case Study: Cohesion in Hibernate

getSQLUpdateByRowIdStrings

isAffectedByEnabledFilters

initializeEnhancedEntityUsedAsProxy

afterInitialize

doLoad

instantiate

getNaturalIdentifierSnapshot

getConcreteProxyClass

loadEntityIdByNaturalId

postInstantiate

handleNaturalIdReattachment

getMappedClass

getIdByUniqueKey

createProxy

getDatabaseSnapshot

...

AbstractEntityPersister.java has 380 methods

+5000 lines of code in the
hotspot, indicating low cohesion

https://codescene.io/projects/29298/jobs/594242/results/code/hotspots/system-map
https://codescene.io/projects/29298/jobs/594242/results/code/hotspots/system-map
https://codescene.io/projects/29298/jobs/594242/results/code/hotspots/system-map

Refactoring for Cohesion: a socio-technical fit

getSQLUpdateByRowIdStrings

isAffectedByEnabledFilters

initializeEnhancedEntityUsedAsProxy

afterInitialize

doLoad

instantiate

getNaturalIdentifierSnapshot

getConcreteProxyClass

loadEntityIdByNaturalId

postInstantiate

handleNaturalIdReattachment

getMappedClass

getIdByUniqueKey

createProxy

getDatabaseSnapshot

...

AbstractEntityPersister.java
has 380 methods

Proxy

Improves performance by offering
lazy loading

getConcreteProxyClass

createProxy

NaturalEntityIdentity

A natural ID uniquely identifies each
entity.

getNaturalIdentifierSnapshot

loadEntityIdByNaturalId

handleNaturalIdReattachment

LifeCycle

Each entity passes through the
different stages, e.g. transient,
persistent.

afterInitialize

postInstantiate

Regroup them according to responsibilities, and
use the groups to determine cohesive design
elements (classes, modules)

@AdamTornhill

N
atural boundaries for developers

codescene.com@AdamTornhill

Socio-Technical Smell #3:

A Propagating Cost of Change

Not all dependencies are equal

@AdamTornhill

Low cohesion

Cohesion Constraints the People Organization

@AdamTornhill

Meaningful dependencies inside a
package indicate that the design
elements belong together.

Keep inter-package
dependencies to a minimum.

Unmanaged dependencies lead to code
changes rippling across modular boundaries.

In low cohesion designs, the intra-package
dependencies tend to be tight too.

High cohesion

Code changes for a reason

@AdamTornhill

What if we could evaluate our actual modifications
against the desired patterns?

Introducing Change Coupling: logical dependencies

@AdamTornhill

commit 796d31809b3683083d3b62ccbab4f00dec8ffb1f

Author: David Lightman

Date: Fri Aug 12 13:27:53 2022 -0700

 Support multiple grades of fuel (small fix, right).

402 2 src/detectors/FuelGradeDetector.cs

1 0 src/engine/FuelInjector.cs

13 1 src/engine/Engine.cs

65 3 src/statistics/Diagnostics.cs

2 1 test/engine/FuelInjectionTest.cs

commit 32baab38f8f48f629ccd3f7564251b91dc2d777d

Author: Stephen Falken

Date: Thu Aug 11 23:04:45 2022 -0400

 Increase the pressure to use the fuel more efficiently.

12 5 src/engine/FuelInjector.cs

16 82 src/engine/Engine.cs

6 3 src/statistics/Diagnostics.cs

270 0 test/engine/FuelInjectionTest.cs

Files which are co-changing as
part of multiple commits

First commit

Second commit

Introducing Change Coupling: logical dependencies

@AdamTornhill

commit #1 commit #2 commit #3

login.f

launch.f

chess.f

dial_up.f

The login and chess files keep co-changing

— there has to be some logical relationship
between them.

Example inspired by https://en.wikipedia.org/wiki/WarGames

https://en.wikipedia.org/wiki/WarGames

Use Change Coupling to Visualizing Package Cohesion

@AdamTornhill
https://github.com/dotnet/aspnetcore

https://github.com/dotnet/aspnetcore

Acting on Change Coupling: Contextualize

@AdamTornhill

Views

Models

Controllers

Expected change patterns ✔, but does this architectural
pattern really support the way the system evolves?

https://github.com/SebastiaanLubbers/MvcMusicStore

Desired change patterns: a unit test co-evolves with
the code under test.

https://github.com/adamtornhill/code-maat

God Class: tight coupling without obvious
patterns, nor benefits.

https://github.com/DrKLO/Telegram

Src

Test

https://github.com/SebastiaanLubbers/MvcMusicStore
https://github.com/adamtornhill/code-maat
https://github.com/DrKLO/Telegram

Tip: Evaluate Change Coupling according to your Architectural Patterns

@AdamTornhill

🎗Change coupling is problematic when it
violates your architectural principles.

🎗Surprise is one of the most expensive things
you can put into a software architecture.

codescene.com@AdamTornhill

Socio-Technical Smell #4:

Dependent Work Crossing Team Boundaries

Avoid Shotgun Surgery

Align your architecture with the problem

domain to create natural team boundaries.

codescene.com@AdamTornhill

Socio-Technical Smell #5:

Unhealthy Code with a Low Truck Factor

@AdamTornhill

Product #1 Product #2 Product #3

?

The Technical Debt That Wasn’t

Don’t Confuse a lack of Familiarity with Complexity

@AdamTornhill

Unhealthy Code: Unfamiliarity breeds risk

@AdamTornhill

Uncovering the people side:

Does it matter which programmer that makes a change or fixes a bug?

Unhealthy Code comes with a significant on-boarding cost:

unless you’re the main developer, you need

• 45% more time for small tasks, and

• 93% more time for large tasks compared to Green Code.

Borg, M., Tornhill, A., & Mones, E. (2023). U Owns the Code That Changes and How Marginal Owners
Resolve Issues Slower in Low-Quality Source Code: https://arxiv.org/pdf/2304.11636.pdf

Healthy Warning Alert

Code Health category

Task completions times in unhealthy code can
be up to 10x longer than green, healthy code

Re
la

tiv
e

sc
al

e

D

ev
el

op
m

en
t t

im
e

fo
r

co
de

 c
ha

ng
es

0.20

0.40

0.60

0.80

1.00

Code Red: The Business Impact of Code Quality:

 https://arxiv.org/abs/2203.04374

https://arxiv.org/pdf/2304.11636.pdf
https://arxiv.org/abs/2203.04374

Meet the Bus Lottery Truck Factor

@AdamTornhill

When Unhealthy Code meets the Truck Factor:

The Highway to Legacy Code

Remaining team

Truck factor

Truck factor
in complex
code

The Truck Factor in React: 2 people

Remaining team

Truck factor

Truck factor
in complex
code

Visualizing the truck factor in vue.js: 1 person

Some parts might be more
critical than others…

Code Quality issues amplify Organizational Problems

@AdamTornhill

Let community smells be a driver for refactoring: prioritize
improvements to unhealthy code with a low truck factor.

codescene.com@AdamTornhill

#1 — The Overcrowded System

#2 — Coordination Bottlenecks in the Code

#3 — A Propagating Cost of Change

Socio-Technical Smells cause Organizational Friction

#4 — Dependent Work Crossing Team Boundaries

#5 — Unhealthy Code with a Low Truck Factor

Summary

Improving code reduces organizational friction

@AdamTornhill

Design for a socio-technical alignment:

simpler on-boarding by flattening the [technical] learning curve,

reduce key person risks by making code cognitively affordable,

decouple teams via cohesive designs to protect features from each other,

minimize defects by avoiding excess coordination in code, and

improve team morale by increasing developer happiness.

Learn more: references, books, and tools
Research papers:

• The business impact of Code Quality:  

https://arxiv.org/abs/2203.04374

• On-boarding costs in unhealthy code: 

 https://arxiv.org/pdf/2304.11636.pdf

• Happiness and the Productivity of Software Engineers: 

https://arxiv.org/pdf/1904.08239.pdf

• The Influence of Organizational Structure On Software Quality: 

https://www.microsoft.com/en-us/research/publication/the-influence-of-

organizational-structure-on-software-quality-an-empirical-case-study/

Adam Tornhill

https://twitter.com/AdamTornhill

The CodeScene tool for analysis + visualizations:  

https://codescene.com/

Your Code as a Crime Scene, 2nd ed (2023):

https://pragprog.com/titles/atcrime2/your-code-as-a-crime-scene-second-edition/

https://arxiv.org/abs/2203.04374
https://arxiv.org/pdf/2304.11636.pdf
https://arxiv.org/pdf/1904.08239.pdf
https://www.microsoft.com/en-us/research/publication/the-influence-of-organizational-structure-on-software-quality-an-empirical-case-study/
https://www.microsoft.com/en-us/research/publication/the-influence-of-organizational-structure-on-software-quality-an-empirical-case-study/
https://twitter.com/AdamTornhill
https://codescene.com/

