
YOU KEEP USING THAT WORD
Sam Newman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

#TeamHexagon

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

Inventory

Returns

Customer

OrderShipping

hachyderm.io/@samnewman

Inventory

Returns

Customer

OrderShipping

hachyderm.io/@samnewman

Inventory

Returns

Customer

OrderShipping

Logical dependency

hachyderm.io/@samnewman

Returns Shipping

hachyderm.io/@samnewman

Returns Shipping

hachyderm.io/@samnewman

Returns Shipping

The Returns microservice depends on some
functionality which Shipping provides

Synchronous

Synchronous vs Asynchronous

hachyderm.io/@samnewman

MAIN STYLES OF COMMUNICATION

hachyderm.io/@samnewman

MAIN STYLES OF COMMUNICATION

Request/Response

hachyderm.io/@samnewman

MAIN STYLES OF COMMUNICATION

Request/Response Event-Driven

hachyderm.io/@samnewman

REQUEST-RESPONSE

Returns Shipping

The consumer is asking
the microservice for
something

hachyderm.io/@samnewman

REQUEST-RESPONSE

Returns Shipping

I need a postage label!
The consumer is asking
the microservice for
something

Request

Consumer

hachyderm.io/@samnewman

REQUEST-RESPONSE

Returns Shipping

I need a postage label!

Here you go!

The consumer is asking
the microservice for
something

Request

Response

Consumer

hachyderm.io/@samnewman

EVENT-DRIVEN

Inventory

An event (fact) is broadcast

hachyderm.io/@samnewman

EVENT-DRIVEN

Inventory

An event (fact) is broadcast

Stock Level
Changed!

Event

hachyderm.io/@samnewman

EVENT-DRIVEN

Inventory

An event (fact) is broadcast Promotions

Wishlist

Stock Level
Changed!

Event

hachyderm.io/@samnewman

EVENT-DRIVEN

Inventory

An event (fact) is broadcast

Interested parties receive
the event and react
accordingly

Promotions

Wishlist

Stock Level
Changed!

Event

hachyderm.io/@samnewman

EVENT-DRIVEN

Inventory

An event (fact) is broadcast

Interested parties receive
the event and react
accordingly

The emitting microservice
doesn’t need to know about
consumers

Promotions

Wishlist

Stock Level
Changed!

Event

hachyderm.io/@samnewman

EVENT-DRIVEN

Inventory

An event (fact) is broadcast

Interested parties receive
the event and react
accordingly

The emitting microservice
doesn’t need to know about
consumers

Promotions

Wishlist

Stock Level
Changed!

Consumers

Event

Synchronous vs Asynchronous

Request/Response Event-Driven

Request/Response Event-Driven
Synchronous or Asynchronous

Request/Response Event-Driven
AsynchronousSynchronous or Asynchronous

I don’t think there is any consistent
definition of what asynchronous

communication means

https://pathelland.substack.com/p/dont-get-stuck-in-the-con-game-v3

https://twitter.com/samnewman/status/1414894650125586434

What I found might shock you!

https://twitter.com/darrenhobbs/status/1414920239142342662

This implies that asynchronous
communication will be slower!

But this *feels* like a useful distinction

hachyderm.io/@samnewman

REACTIVE MANIFESTO

https://www.reactivemanifesto.org/

hachyderm.io/@samnewman

REACTIVE MANIFESTO?

https://www.reactivemanifesto.org/glossary#Asynchronous

hachyderm.io/@samnewman

“…the processing of a request occurs
at an arbitrary time, sometime after it
has been transmitted from client to
server”

https://www.reactivemanifesto.org/glossary#Asynchronous

hachyderm.io/@samnewman

“…the processing of a request occurs
at an arbitrary time, sometime after it
has been transmitted from client to
server”

https://www.reactivemanifesto.org/glossary#Asynchronous

Wat?

hachyderm.io/@samnewman

As opposed to the server processing a
request before it is sent?

hachyderm.io/@samnewmanhttps://flickr.com/photos/londonmatt/34854868023/

hachyderm.io/@samnewman

REACTIVE MANIFESTO (CONT)

“This is the [opposite] of synchronous processing which
implies that the client only resumes its own execution
once the service has processed the request.”

https://www.reactivemanifesto.org/glossary#Asynchronous

https://twitter.com/SteveSmith_Tech/status/1414906580542312450

https://twitter.com/SteveSmith_Tech/status/1414906580542312450

https://twitter.com/SteveSmith_Tech/status/1414906580542312450

https://twitter.com/SteveSmith_Tech/status/1414906580542312450

https://twitter.com/SteveSmith_Tech/status/1414906580542312450

https://twitter.com/SteveSmith_Tech/status/1414906580542312450

hachyderm.io/@samnewman

What this really is about is
non-blocking

Let’s explore the concept of non-
blocking calls

hachyderm.io/@samnewman

Subscription

LoyaltyEnrolment

hachyderm.io/@samnewman

Subscription

Loyalty
Award Points

Enrolment

hachyderm.io/@samnewman

Subscription

Loyalty
Award Points

Upgrade Subscription

Enrolment

hachyderm.io/@samnewman

BLOCKING CALLS

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment

res1 = loyaltyService.awardPoints(custID, 200)

res2 = subsService.upgradeSub(custID, PLATINUM)

hachyderm.io/@samnewman

BLOCKING CALLS

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment

res1 = loyaltyService.awardPoints(custID, 200)

res2 = subsService.upgradeSub(custID, PLATINUM)

hachyderm.io/@samnewman

BLOCKING CALLS

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment

res1 = loyaltyService.awardPoints(custID, 200)

res2 = subsService.upgradeSub(custID, PLATINUM)

We then wait until we either get a response, or we give up

hachyderm.io/@samnewman

BLOCKING CALLS

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment

res1 = loyaltyService.awardPoints(custID, 200)

res2 = subsService.upgradeSub(custID, PLATINUM)

We then wait until we either get a response, or we give up

hachyderm.io/@samnewman

BLOCKING CALLS

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment

res1 = loyaltyService.awardPoints(custID, 200)

res2 = subsService.upgradeSub(custID, PLATINUM)

We then wait until we either get a response, or we give up

Once the response to loyalty has completed,
then we can call Subscription

hachyderm.io/@samnewman

PROBLEMS WITH BLOCKING CALLS?

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment

hachyderm.io/@samnewman

PROBLEMS WITH BLOCKING CALLS?

Latency is the sum of the calls

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment

hachyderm.io/@samnewman

PROBLEMS WITH BLOCKING CALLS?

Latency is the sum of the calls

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment

50ms

hachyderm.io/@samnewman

PROBLEMS WITH BLOCKING CALLS?

Latency is the sum of the calls

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment

50ms

150ms

hachyderm.io/@samnewman

PROBLEMS WITH BLOCKING CALLS?

Latency is the sum of the calls

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment

50ms

150ms

e.g. 50 + 150ms = 200ms in total

hachyderm.io/@samnewman

PROBLEMS WITH BLOCKING CALLS?

Latency is the sum of the calls

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment

50ms

150ms

e.g. 50 + 150ms = 200ms in total

But remember that latency for an
operation is not fixed - it will have
a range

hachyderm.io/@samnewman

An improvement would be to
do these two calls in parallel

hachyderm.io/@samnewman

PARALLEL CALLS

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment
res1 = loyaltyService.awardPoints(custID, 200)

res2 = subsService.upgradeSub(custID, PLATINUM)

hachyderm.io/@samnewman

PARALLEL CALLS

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment
res1 = loyaltyService.awardPoints(custID, 200)

res2 = subsService.upgradeSub(custID, PLATINUM)

hachyderm.io/@samnewman

PARALLEL CALLS

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment
res1 = loyaltyService.awardPoints(custID, 200)

res2 = subsService.upgradeSub(custID, PLATINUM)

hachyderm.io/@samnewman

PARALLEL CALLS

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment
res1 = loyaltyService.awardPoints(custID, 200)

res2 = subsService.upgradeSub(custID, PLATINUM)

hachyderm.io/@samnewman

PARALLEL CALLS

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment
res1 = loyaltyService.awardPoints(custID, 200)

res2 = subsService.upgradeSub(custID, PLATINUM)

res1 =
loyaltyService

 .awardPoints(

 custID, 200)

res2 = subsService

 .upgradeSub(

 custID, PLATINUM)

hachyderm.io/@samnewman

PARALLEL CALLS

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment
res1 = loyaltyService.awardPoints(custID, 200)

res2 = subsService.upgradeSub(custID, PLATINUM)

res1 =
loyaltyService

 .awardPoints(

 custID, 200)

res2 = subsService

 .upgradeSub(

 custID, PLATINUM)

hachyderm.io/@samnewman

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment
fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM))

hachyderm.io/@samnewman

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment
fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM))

The future represents a background thread of
execution - we can continue while the call is made
in the background

hachyderm.io/@samnewman

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment
fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM))

The future represents a background thread of
execution - we can continue while the call is made
in the background

So the calls to Loyalty and Subscription
service can now be made in parallel

hachyderm.io/@samnewman

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment
fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM))

The future represents a background thread of
execution - we can continue while the call is made
in the background

So the calls to Loyalty and Subscription
service can now be made in parallel

hachyderm.io/@samnewman

But we may actually need the
responses, right?

hachyderm.io/@samnewman

fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM))

hachyderm.io/@samnewman

fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM))

hachyderm.io/@samnewman

fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM))

At this point, we don’t know if the calls to
either service have been processed or not.

hachyderm.io/@samnewman

fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM))

At this point, we don’t know if the calls to
either service have been processed or not.

We might have to wait for the results!

hachyderm.io/@samnewman

fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM))

At this point, we don’t know if the calls to
either service have been processed or not.

We might have to wait for the results!

await(fut1, fut2)

hachyderm.io/@samnewman

fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM))

At this point, we don’t know if the calls to
either service have been processed or not.

We might have to wait for the results!

await(fut1, fut2)

And now we’re blocking program
execution….

hachyderm.io/@samnewman

Even if you have non-blocking calls,
the logic of your processing may

require waiting for things to happen!

hachyderm.io/@samnewman

Even non-blocking calls may
end up blocking

hachyderm.io/@samnewman

But in general if you can use
non-blocking calls and run them
in parallel, that is a good thing.

https://twitter.com/evolvable/status/1414909633597116417

https://twitter.com/Benkzxar/status/1414965335338496001

Intermediary?

Broker

A

A

Message

BA

Message

BA Broker

Message

BA Broker

Message

BA Broker

Message

BA Broker

Message

BA Broker

With a broker, we can offload the
requirement to guarantee delivery

(kinda)

Message

https://twitter.com/goingkilo/status/1414898869075251201

https://flickr.com/photos/profilerehab/5707316547/

There are variations on how we can
implement this “inbox” pattern

There are variations on how we can
implement this “inbox” pattern

Database

There are variations on how we can
implement this “inbox” pattern

Database
File system

There are variations on how we can
implement this “inbox” pattern

Database
File system

Email!

The sender of a message doesn’t need to
worry about whether or not the recipient is

currently available

The sender of a message doesn’t need to
worry about whether or not the recipient is

currently available

But we do need to trust the intermediary (the
broker), and that does have to be available!

hachyderm.io/@samnewman

BROKER-BASED REQUEST-RESPONSE

A

Broker

hachyderm.io/@samnewman

BROKER-BASED REQUEST-RESPONSE

A

Request

Broker

hachyderm.io/@samnewman

BROKER-BASED REQUEST-RESPONSE

BA

Request

Broker

hachyderm.io/@samnewman

BROKER-BASED REQUEST-RESPONSE

BA

Request
QueueRequest

Broker

hachyderm.io/@samnewman

BROKER-BASED REQUEST-RESPONSE

BA

Request
Queue

Request

Broker

hachyderm.io/@samnewman

BROKER-BASED REQUEST-RESPONSE

BA

Request
Queue Request

Broker

hachyderm.io/@samnewman

BROKER-BASED REQUEST-RESPONSE

BA

Request
Queue Request

Response

Broker

hachyderm.io/@samnewman

Response
Queue

BROKER-BASED REQUEST-RESPONSE

BA

Request
Queue Request

Response

Broker

hachyderm.io/@samnewman

Response
Queue

BROKER-BASED REQUEST-RESPONSE

BA

Request
Queue Request

Response

Broker

hachyderm.io/@samnewman

A Response
Queue

B

A Request
Queue

Broker

Response could be
received by a different
instance

hachyderm.io/@samnewman

A Response
Queue

B

A Request
Queue Request

Broker

Response could be
received by a different
instance

hachyderm.io/@samnewman

A Response
Queue

B

A Request
Queue Request

Response

Broker

Response could be
received by a different
instance

hachyderm.io/@samnewman

A Response
Queue

B

A Request
Queue Request

Response

Broker

Response could be
received by a different
instance

hachyderm.io/@samnewman

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment
fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM))

hachyderm.io/@samnewman

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment
fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM))

Here, the assumption is that the response comes
back to the same instance

hachyderm.io/@samnewman

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment
fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM))

Here, the assumption is that the response comes
back to the same instance

So we may need to deal with what
happens if the consumer dies part way
through

hachyderm.io/@samnewman

It’s arguable that the intermediary-
based communication encourages

stateless processing

hachyderm.io/@samnewman

COMPETING DEFINITIONS?

hachyderm.io/@samnewman

COMPETING DEFINITIONS?

Immediacy

hachyderm.io/@samnewman

COMPETING DEFINITIONS?

Immediacy

Temporal Coupling

hachyderm.io/@samnewman

COMPETING DEFINITIONS?

Immediacy

Temporal Coupling

Non-blocking

hachyderm.io/@samnewman

COMPETING DEFINITIONS?

Immediacy

Temporal Coupling

Non-blocking

Intermediary

hachyderm.io/@samnewman

Will the real asynchronous
communication please stand up?

Does this matter?

Words have different meanings

What words in the English language has
the most dictionary meanings?

hachyderm.io/@samnewman

Set

hachyderm.io/@samnewman

Set Run

hachyderm.io/@samnewman

Set Run
430 meanings

https://www.guinnessworldrecords.com/world-records/english-word-with-the-most-meanings

hachyderm.io/@samnewman

Set Run
430 meanings 645 meanings

https://www.guinnessworldrecords.com/world-records/english-word-with-the-most-meanings

https://www.nytimes.com/2011/05/29/opinion/29winchester.html

hachyderm.io/@samnewman

So we’re used to this, right?

hachyderm.io/@samnewman

We derive personal understanding
of a word via context

hachyderm.io/@samnewman

“The meaning of a word becomes
more narrow as we add other words
around it”

- Ian Cooper (heavily paraphrased)

hachyderm.io/@samnewman

run

hachyderm.io/@samnewman

run

The issue got worse
the moment the
program was

hachyderm.io/@samnewman

run

hachyderm.io/@samnewman

run
The economy crashed
due to a on the
banks

hachyderm.io/@samnewman

So, does this matter?

hachyderm.io/@samnewman

But we throw around terms like
“asynchronous” without enough

context around the term to derive
shared meaning

hachyderm.io/@samnewman

https://www.reactivemanifesto.org/glossary#Asynchronous

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

“Originally only in medical contexts”

- Oxford English Dictionary

hachyderm.io/@samnewman

hachyderm.io/@samnewman

hachyderm.io/@samnewman

ASYNCHRONOUS DEFINTION IN A COMPUTING CONTEXT

“Designating data transmissions in which packets
of data are sent at irregular intervals, with the start
and end of each packet being marked by specific
signals involving such transmission”

- Oxford English Dictionary

hachyderm.io/@samnewman

Software is a type of
sociotechnical system

hachyderm.io/@samnewman

Sociotechnical

hachyderm.io/@samnewman

SociotechnicalSociotechnical{
People

hachyderm.io/@samnewman

SociotechnicalSociotechnical{
People

{Technology

hachyderm.io/@samnewmanhttps://flickr.com/photos/chaoticmind75/52046974941/

hachyderm.io/@samnewman

hachyderm.io/@samnewman

The amount of useful software created
by individuals is vanishingly rare

hachyderm.io/@samnewman

Bringing groups of people together
to use and use technology requires

good communication

hachyderm.io/@samnewman

hachyderm.io/@samnewman

So, we’re going to make this asynchronous…

hachyderm.io/@samnewman

So, we’re going to make this asynchronous…

hachyderm.io/@samnewman

So, we’re going to make this asynchronous…

hachyderm.io/@samnewman

So, we’re going to make this asynchronous…

hachyderm.io/@samnewman

So, we’re going to make this asynchronous…

hachyderm.io/@samnewman

The term “asynchronous” in the
context of inter-process

communication has so many meanings
that it is effectively meaningless

So what can we do?

Understand what your
application needs

Understand what your
application needs

Describe how it should handle
different situations

What should happen when the
server is unreachable?

What should happen when the
server is unreachable?

How fast should it be?

What should happen when the
server is unreachable?

How fast should it be?

What if the client crashes?

Where possible, use more
explicit terms

Clients should be non-blocking

Clients should be non-blocking

Run operations in parallel

Clients should be non-blocking

Run operations in parallel

Use broker X as an intermediary…

But try not to make having a
common meaning be about

correcting someone else

"You keep using that word. I do not think it means what
you think it means."

— Inigo Montoya, The Princess Bride

https://tvtropes.org/pmwiki/pmwiki.php/Film/ThePrincessBride

When someone says “we should
make this asynchronous”…

When someone says “we should
make this asynchronous”…

Perhaps just say, “what does that
mean to you?”

What you find might shock you

hachyderm.io/@samnewman

THANKS!

https://samnewman.io/@samnewman

