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Sam Newman
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Inventory

Returns

Customer

OrderShipping

Logical dependency
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Returns Shipping

The Returns microservice depends on some 
functionality which Shipping provides



Synchronous



Synchronous vs Asynchronous
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MAIN STYLES OF COMMUNICATION

Request/Response Event-Driven
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REQUEST-RESPONSE

Returns Shipping

I need a postage label!

Here you go!

The consumer is asking 
the microservice for 
something

Request

Response

Consumer
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EVENT-DRIVEN

Inventory

An event (fact) is broadcast

Interested parties receive 
the event and react 
accordingly

The emitting microservice 
doesn’t need to know about 
consumers

Promotions

Wishlist

Stock Level 
Changed!

Consumers

Event
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Request/Response Event-Driven
AsynchronousSynchronous or Asynchronous



I don’t think there is any consistent 
definition of what asynchronous 

communication means



https://pathelland.substack.com/p/dont-get-stuck-in-the-con-game-v3



https://twitter.com/samnewman/status/1414894650125586434



What I found might shock you!



https://twitter.com/darrenhobbs/status/1414920239142342662



This implies that asynchronous 
communication will be slower!



But this *feels* like a useful distinction
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REACTIVE MANIFESTO

https://www.reactivemanifesto.org/
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REACTIVE MANIFESTO?

https://www.reactivemanifesto.org/glossary#Asynchronous
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“…the processing of a request occurs 
at an arbitrary time, sometime after it 
has been transmitted from client to 
server”

https://www.reactivemanifesto.org/glossary#Asynchronous

Wat?
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As opposed to the server processing a 
request before it is sent? 
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REACTIVE MANIFESTO (CONT)

“This is the [opposite] of synchronous processing which 
implies that the client only resumes its own execution 
once the service has processed the request.”

https://www.reactivemanifesto.org/glossary#Asynchronous



https://twitter.com/SteveSmith_Tech/status/1414906580542312450

https://twitter.com/SteveSmith_Tech/status/1414906580542312450


https://twitter.com/SteveSmith_Tech/status/1414906580542312450

https://twitter.com/SteveSmith_Tech/status/1414906580542312450


https://twitter.com/SteveSmith_Tech/status/1414906580542312450

https://twitter.com/SteveSmith_Tech/status/1414906580542312450
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What this really is about is 
non-blocking



Let’s explore the concept of non-
blocking calls



hachyderm.io/@samnewman

Subscription

LoyaltyEnrolment



hachyderm.io/@samnewman

Subscription

Loyalty
Award Points

Enrolment



hachyderm.io/@samnewman

Subscription

Loyalty
Award Points

Upgrade Subscription

Enrolment



hachyderm.io/@samnewman

BLOCKING CALLS

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment

res1 = loyaltyService.awardPoints(custID, 200)

res2 = subsService.upgradeSub(custID, PLATINUM)
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BLOCKING CALLS

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment

res1 = loyaltyService.awardPoints(custID, 200)

res2 = subsService.upgradeSub(custID, PLATINUM)

We then wait until we either get a response, or we give up

Once the response to loyalty has completed, 
then we can call Subscription
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PROBLEMS WITH BLOCKING CALLS?

Latency is the sum of the calls

Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment

50ms

150ms

e.g. 50 + 150ms = 200ms in total

But remember that latency for an 
operation is not fixed - it will have 
a range
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An improvement would be to 
do these two calls in parallel
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Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment
fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM)) 

The future represents a background thread of 
execution - we can continue while the call is made 
in the background

So the calls to Loyalty and Subscription 
service can now be made in parallel
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But we may actually need the 
responses, right?
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fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM)) 

At this point, we don’t know if the calls to 
either service have been processed or not.
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fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM)) 

At this point, we don’t know if the calls to 
either service have been processed or not.

We might have to wait for the results!

await(fut1, fut2)
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fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM)) 

At this point, we don’t know if the calls to 
either service have been processed or not.

We might have to wait for the results!

await(fut1, fut2)

And now we’re blocking program 
execution….
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Even if you have non-blocking calls, 
the logic of your processing may 

require waiting for things to happen!
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Even non-blocking calls may 
end up blocking
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But in general if you can use 
non-blocking calls and run them 
in parallel, that is a good thing. 



https://twitter.com/evolvable/status/1414909633597116417



https://twitter.com/Benkzxar/status/1414965335338496001



Intermediary?



Broker



A



A

Message
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Message



BA Broker

Message



BA Broker

Message
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Message



BA Broker

Message



BA Broker

With a broker, we can offload the 
requirement to guarantee delivery 

(kinda)

Message



https://twitter.com/goingkilo/status/1414898869075251201





https://flickr.com/photos/profilerehab/5707316547/
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There are variations on how we can 
implement this “inbox” pattern

Database
File system

Email!



The sender of a message doesn’t need to 
worry about whether or not the recipient is 

currently available



The sender of a message doesn’t need to 
worry about whether or not the recipient is 

currently available

But we do need to trust the intermediary (the 
broker), and that does have to be available!
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Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment
fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM)) 

Here, the assumption is that the response comes 
back to the same instance
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Subscription

Loyalty

Award Points

Upgrade Subscription

Enrolment
fut1 = future(loyaltyService.awardPoints(custID, 200))

fut2 = future(subsService.upgradeSub(custID, PLATINUM)) 

Here, the assumption is that the response comes 
back to the same instance

So we may need to deal with what 
happens if the consumer dies part way 
through
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It’s arguable that the intermediary-
based communication encourages 

stateless processing



hachyderm.io/@samnewman
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COMPETING DEFINITIONS?

Immediacy

Temporal Coupling

Non-blocking

Intermediary
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Will the real asynchronous 
communication please stand up?



Does this matter?



Words have different meanings



What words in the English language has 
the most dictionary meanings?
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Set
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Set Run
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Set Run
430 meanings

https://www.guinnessworldrecords.com/world-records/english-word-with-the-most-meanings
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Set Run
430 meanings 645 meanings

https://www.guinnessworldrecords.com/world-records/english-word-with-the-most-meanings

https://www.nytimes.com/2011/05/29/opinion/29winchester.html
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So we’re used to this, right?
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We derive personal understanding 
of a word via context
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“The meaning of a word becomes 
more narrow as we add other words 
around it”


- Ian Cooper (heavily paraphrased)
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run
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run

The issue got worse 
the moment the 
program was
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run
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run
The economy crashed 
due to a       on the 
banks    
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So, does this matter?
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But we throw around terms like 
“asynchronous” without enough 

context around the term to derive 
shared meaning 
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https://www.reactivemanifesto.org/glossary#Asynchronous
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“Originally only in medical contexts”

- Oxford English Dictionary
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ASYNCHRONOUS DEFINTION IN A COMPUTING CONTEXT

“Designating data transmissions in which packets 
of data are sent at irregular intervals, with the start 
and end of each packet being marked by specific 
signals involving such transmission”


- Oxford English Dictionary



hachyderm.io/@samnewman

Software is a type of 
sociotechnical system
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Sociotechnical



hachyderm.io/@samnewman

SociotechnicalSociotechnical{
People
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SociotechnicalSociotechnical{
People

{Technology
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The amount of useful software created 
by individuals is vanishingly rare
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Bringing groups of people together 
to use and use technology requires 

good communication
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So, we’re going to make this asynchronous…
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So, we’re going to make this asynchronous…
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The term “asynchronous” in the 
context of inter-process 

communication has so many meanings 
that it is effectively meaningless



So what can we do?



Understand what your 
application needs



Understand what your 
application needs

Describe how it should handle 
different situations



What should happen when the 
server is unreachable?



What should happen when the 
server is unreachable?

How fast should it be?



What should happen when the 
server is unreachable?

How fast should it be?

What if the client crashes?



Where possible, use more 
explicit terms



Clients should be non-blocking



Clients should be non-blocking

Run operations in parallel



Clients should be non-blocking

Run operations in parallel

Use broker X as an intermediary…



But try not to make having a 
common meaning be about 

correcting someone else





"You keep using that word. I do not think it means what 
you think it means."


— Inigo Montoya, The Princess Bride

https://tvtropes.org/pmwiki/pmwiki.php/Film/ThePrincessBride


When someone says “we should 
make this asynchronous”…



When someone says “we should 
make this asynchronous”…

Perhaps just say, “what does that 
mean to you?”



What you find might shock you
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THANKS!

https://samnewman.io/@samnewman


