
TOGETHER!
&

@rtfeldman

roc-lang.org

GitHub Repo Visitors

simple language

comptime

toolchain

complex language

borrow checker

guarantees

TOGETHER!
&

1. Why did we mix Rust and Zig?

2. Memory safety in practice

3. Where to draw the line?

Outline

The Storekeeper Bug

Hello, traveler!

The Storekeeper Bug

Hello, traveler!@#$@%Y$49fn tfr8xji

$Bbje359t3g894 2459845t$t 323rfal9

5i5tj4 i5j034340jv 494$#@$ 3409jrj

f1061 0j025g4rwKFK34k er0-3304 4220

40w94t0wrkr094## J4o9IWJM#OI #$%T)#

The Storekeeper Bug

roc-lang.org

automatic memory management

“A fast, friendly, functional language.”

Creating a Language

Don’t want to hit a language performance ceiling

Don’t want to worry about memory unsafety bugs

Hello, traveler!@#$@%Y$49fn tfr8xji

$Bbje359t3g894 2459845t$t 323rfal9

5i5tj4 i5j034340jv 494$#@$ 3409jrj

Building a fast compiler

arena allocation

CPU memory cache

branch misprediction

SIMD instructions

no GC
concurrency

How did it go?

Reminded me of learning Haskell

🤯 Learning curve

😵 Language complexity

💪 Confidence once I got it working

Basic language primitives (numbers, strings, lists, …)

Partly implemented in Roc, partly built into compiler

Implemented with manual LLVM calls at first

Like writing assembly with much more ceremony

Roc “Builtins”

Manual LLVM CallsRust

array1 == array2 in Manual LLVM Calls

Some languages can compile to LLVM bitcode

LLVM bitcode can mix with Roc compiler output

This includes C, C++, Zig, and Rust

Goal: Get Higher-Level

unsafe needed all over the place

unsafe FFI means “you’re on your own”

Rust’s generated LLVM caused problems

Tooling and development build difficulties

Obvious First Choice: Rust!

Why not C?

The Storekeeper Bug Revisited
Hello, traveler!@#$@%Y$49fn tfr8xji

$Bbje359t3g894 2459845t$t 323rfal9

5i5tj4 i5j034340jv 494$#@$ 3409jrj

f1061 0j025g4rwKFK34k er0-3304 4220

40w94t0wrkr094## J4o9IWJM#OI #$%T)#

The Storekeeper Bug Revisited
Hello, traveler!@#$@%Y$49fn tfr8xji

$Bbje359t3g894 2459845t$t 323rfal9

5i5tj4 i5j034340jv 494$#@$ 3409jrj

f1061 0j025g4rwKFK34k er0-3304 4220

40w94t0wrkr094## J4o9IWJM#OI #$%T)#

Hello, traveler!

46

3310172 108 108 111 44 32 116 114 97 118 101 108 101 114

Hello, traveler.
10172 108 108 111 44 32 116 114 97 118 101 108 101 114

0

0

Hello, traveler.
10172 108 108 111 44 32 116 114 97 118 101 108 101 114 46

Hello, traveler!
10172 108 108 111 44 32 116 114 97 118 101 108 101 114 33 0

0

str[str_length - 1] = '!';

Hello, traveler.
10172 108 108 111 44 32 116 114 97 118 101 108 101 114 46

Hello, traveler!
10172 108 108 111 44 32 116 114 97 118 101 108 101 114 33 0

0

str[str_length] = '!';

46 33

Hello, traveler.
10172 108 108 111 44 32 116 114 97 118 101 108 101 114 46

Hello, traveler.!
10172 108 108 111 44 32 116 114 97 118 101 108 101 114

0

str[str_length] = '!';

Hello, traveler.!@#$@%Y$49fn fr8xji

$Bbje359t3g894 2459845t$t 323rfal9

5i5tj4 i5j034340jv 494$#@$ 3409jrj

f1061 0j025g4rwKFK34k er0-3304 4220

40w94t0wrkr094## J4o9IWJM#OI%t 0

What if this memory had stored a secret?

silently overwrite whatever’s there

str[str_length] = '!';

Memory Safety

Error: Index out of bounds

Error: Index out of bounds

70% of critical vulns due to memory unsafety

Some of these CVEs are buffer overruns

Bounds checks prevent buffer overrun vulns

There are other types of memory unsafety!

// use `array` again

Memory Safety

// do a bunch of stuff

free(array);

array = malloc(321);

use-after-free

// do other things

free(array);

Memory Safety

// do a bunch of stuff

free(array);

array = malloc(321);

double-free
use-after-free

defer free(array);

// do a bunch of stuff

Memory Safety
array = malloc(321);

use-after-free
double-free

defer free(array);

// do a bunch of stuff

Memory Safety
array = malloc(321);

use-after-free
double-free

much less likely to have a

defer free(array);

// do a bunch of stuff

Memory Safety
array = malloc(321);

use-after-free
double-free

much less likely to have a
much less likely to have a

// do a bunch of stuff

// (`array` gets freed)

Memory Safety
array = malloc(321);

use-after-free
double-free

cannot have a
cannot have a

// do a bunch of stuff

// (`array` gets freed)

Memory Safety
array = malloc(321);

use-after-free*
double-free*

cannot have a
cannot have a

unless you use
the unsafe keyword

“I don’t understand why, in this day and age,

anyone would use a memory-unsafe language.”

“memory-safe language”

Potential Memory Unsafety App Code Dependencies

none constant number

FFI every dependency

FFI + “unsafe” every dependency

anywhere every dependency

“memory-safe language” ≠ “memory unsafety cannot happen here”

“I don’t understand why, in this day and age,

anyone would use a memory-unsafe language.”

“memory-unsafe language” ≠ “everything will definitely explode”

these are about where potential memory unsafety can be found

If we cannot have memory safety in this code…

…and Rust code would need unsafe everywhere

then why not optimize for other things?

“I don’t understand why, in this day and age,

anyone would use a memory-unsafe language.”

“I don’t understand why, in this day and age,

anyone would use a memory-unsafe language.”

Never deallocates

Zig has bounds checks

use-after-free

double-free

buffer overrun

silently overwrite whatever’s there

str[str_length] = '!';

Error: Index out of bounds

Error: Index out of bounds

What help do I get?

Drop in Rust

defer in Zig

RAII in C++

ARC in ObjC/Swift

Bounds Checks

What help do I get?
Tracing GC

Zig testing allocators

Address Sanitizer

UBSan

Miri in (non-FFI) Rust

Rust’s borrow checker is useful tool

Rust’s unsafe is a useful tool

Zig’s defer is a useful tool

Zig’s testing allocator is a useful tool

These tools all have different tradeoffs

Memory Safety isn’t all-or-nothing

More prone to memory unsafety (e.g. no defer)

More gotchas and footguns (e.g. silent conversions)

Less ergonomic features (e.g. no comptime)

Zig community is helpful and beginner-friendly

Why not C? (…when Zig is an option)

zig cc makes cross-compiling C code easy

At work, we use this for Node.js ↔ Roc interop

Zig Tooling ❤
vendr.com/careers

array1 == array2 in Manual LLVM Calls

Some languages can compile to LLVM bitcode

LLVM bitcode can mix with Roc compiler output

This includes C, C++, Zig, and Rust

Goal: Get Higher-Level

unsafe needed all over the place

unsafe FFI means “you’re on your own”

Rust’s generated LLVM caused problems

Tooling and development build difficulties

Obvious First Choice: Rust!

TOGETHER!
&

Both can compile to C-compatible binary libraries

Both can import C-compatible binary libraries

Overhead is same as using a C library (e.g. libssl)

Sharing type defs requires duplication or code gen

Calling between Rust and Zig

We’ve discussed it!

Main appeal: compile times

Zig’s allocators are a natural fit

Some parts of code base could be simplified

Why not use Zig in Roc’s compiler too?

We already have 300K LoC of Rust

Sharing code would complicate the build (even more)

unsafe is very nice for auditing new contributions

Costs seem to outweigh benefits for the compiler itself

Why not use Zig in Roc’s compiler too?

Large code base with lots of mandatory-unsafe code

Also lots of things with tricky lifetimes to get right

Might want access to Zig toolchain and Rust crates

Rust’s concurrency checking, but also Zig’s comptime

Why else might one mix Rust and Zig?

TOGETHER!
&

I host a podcast!

software-unscripted.comroc-lang.org

