fentec health and

Bridging the chasm between Research and Software Development

By Linda Stougaard Nielsen At goto copenhagen, 4 October 2022

Linda Stougaard Nielsen, Ph.D.

Director Data Science Femtec health

Agenda

Context – company & products The problem – two examples Possible solutions Remaining challenges Q&A

© femtec health 2022 | A health and beauty sciences company

ava – a femtec health company

Swiss company, 2014, awards in startup, medtec Acquired by femtec health 2022 Female reproductive health

Wearable device collecting signals:

- Heart rate, heart rate variability, temperature, breathing rate, perfusion, sleep state every 10 s
- 200'000 users each collecting 1 mio data points every night

Applications:

- Fertility app launched in 2016 (CE & FDA approved)
- Contraception app
- Covid early detection (research project)

How does it work

Wearable Sensors Reveal Menses-driven Changes in Physiology and Enable Prediction of the Fertile Window: an Observational Study, Goodale, B. M., Shilaih, M., Falco, L., Dammeier, F., Hamvas, G., & Leeners, B. (2019)

\mathcal{M}

Medical research

- Hormonal changes throughout cycle, pregnancy, infections, menopause
- Influence on physiological signals

Clinical trials

- Cooperation with research institutes
- Certification and postmarket surveillance
- Statistical analyses

Machine learning

- Signal processing
- Classical statistics and machine-learning
- Neural Networks
- Constraints on noisy data and risk

"One of the hardest parts of machine learning is effectively putting models in production."

© femtec health 2022 | A health and beauty sciences company

\mathcal{M}

https://neptune.ai

The problem 2 examples

Example 1: Re-process all raw data files

Parse, split, filter Extract nightly features Assess quality

	EXISTING
Production code	Python module for data processing
Scaling solution	Spark on AWS
Challenges	 Spark own language Re-implement solution Maintain 2 parallel implementations

\mathcal{M}

Example 1: Re-process all raw data files

Parse, split, filter Extract nightly features Assess quality Production c Scaling solut Challenges

\mathcal{M}

	OLD	NEW
ode	Python module for data processing	
tion	Spark on AWS	Parallel on AWS
	 Spark own language Re-implement solution Maintain 2 parallel implementations 	- Additional implementation of infrastructure to run parallelisation

Example 2: Re-train a tensorflow model

Tensorflow model – not the issue (ok packaged)

Data handling:

- Input data into tensor
- Normalisation
- Filtering of data (outlier detection)
- Model output into app input

Scattered all over the code

- Impossible to follow and to maintain / extend

Different code than used in training

- Impossible to prove consistency between eg. outlier handling in training code vs. production code

\mathcal{M}

Well-known issue a.k.a "glue code"

- supporting code for getting data in and out of generic ML packages
- ~95% of code
- anti-pattern

Re-implementation of code

© femtec health 2022 | A health and beauty sciences company

\mathcal{M}

Issues identified

- "Glue code"

Re-implementation of code

Solutions Just a question of writing good code, right?

Re-use of code

- But some-one has to write the code that can be re-used
- And it may require additional infrastructure (eg. batch processing)
- And what about experimentation: modifying code slightly in various ways

Experimentation / research

 	» : »
<pre>private planning plannin</pre>	>>
Not Trusted Python 3 (pykernel) O File Edit View Insert Cell Kernel Widgets Help Not Trusted Python 3 (pykernel) O P <td< td=""><td></td></td<>	
File Edit View Insert Cell Kernel Widgets Help Not Trusted Python 3 (ipykernel) O P *	
Image:	
1024 5 23 12 11 11.500000 23.750000 17.546763 20.5 -5.546763 -8.5 -11.750000 11.333333 <	
<pre> In [143]:</pre>	
<pre> 1023 1 25 14 11 12.039427 17.487455 17.546763 16.2 -3.546763 -2.2 -3.487455 10.600000 1023 2 29 19 10 11.00000 14.00000 17.546763 16.2 1.453237 2.8 5.00000 10.600000 1023 3 27 17 10 10.500000 16.500000 17.546763 16.2 -0.546763 0.8 0.500000 10.600000 1023 4 27 16 11 10.33333 16.666667 17.546763 16.2 -1.546763 -0.2 -0.666667 10.600000 1023 5 26 15 11 10.50000 16.500000 17.546763 16.2 -2.546763 -1.2 -1.50000 10.60000 10.6000 10.60000 10.60000 10.6000 10.6000 10.6000 10.6000 10.6000 10.6000 10.6000 10.6000 10.6000 10.6000 10.6000 10.600</pre>	
<pre>1023 2 29 19 10 11.00000 14.00000 17.546763 16.2 1.453237 2.8 5.00000 10.600000 1023 3 27 17 10 10.50000 16.50000 17.546763 16.2 -0.546763 0.8 0.50000 10.600000 1023 4 27 16 11 10.33333 16.666667 17.546763 16.2 -1.546763 -0.2 -0.666667 10.600000 1023 5 26 15 11 10.50000 16.50000 17.546763 16.2 -2.546763 -1.2 -1.50000 10.600000 vs x 16 columns vs x 16 columns In [143]: for phase in ['follicular', 'luteal']: user_stats[phase + " length"].hist(histtype="step")</pre>	
<pre>1023 3 27 17 10 10.500000 16.500000 17.546763 16.2 -0.546763 0.8 0.500000 10.600000 1023 4 27 16 11 10.33333 16.666667 17.546763 16.2 -1.546763 -0.2 -0.666667 10.600000 1023 5 26 15 11 10.500000 16.500000 17.546763 16.2 -2.546763 -1.2 -1.500000 10.600000 vs × 16 columns In [143]: for phase in ['follicular', 'luteal']: user_stats[phase + " length"].hist(histtype="step")</pre>	
<pre>1023 4 27 16 11 10.333333 16.666667 17.546763 16.2 -1.546763 -0.2 -0.6666667 10.600000 1023 5 26 15 11 10.500000 16.500000 17.546763 16.2 -2.546763 -1.2 -1.500000 10.600000 vs × 16 columns In [143]: for phase in ['follicular', 'luteal']: user_stats[phase + " length"].hist(histtype="step")</pre>	
<pre>1023 5 26 15 11 10.500000 16.500000 17.546763 16.2 -2.546763 -1.2 -1.500000 10.600000 vs x 16 columns In [143]: for phase in ['follicular', 'luteal']: user_stats[phase + " length"].hist(histtype="step")</pre>	
<pre>vs x 16 columns In [143]: for phase in ['follicular', 'luteal']: user_stats[phase + " length"].hist(histtype="step")</pre>	
<pre>In [143]: for phase in ['follicular', 'luteal']: user_stats[phase + " length"].hist(histtype="step")</pre>	
<pre>fig = plt.gcf() fig.set_size_inches(11, 6) median = np.round(np.median(np.abs(user_stats[phase + ' length'])), 3) mean = np.round(np.mean(np.abs(user_stats[phase + ' length'])), 3) std = np.round (np.std (np.abs(user_stats[phase + ' length'])), 3) plt.title(phase + " length ({} cycles, median = {}, mean = {}, std = {})".format(len(user_s # plt.legend() # plt.savefig('histogram_error_' + phase, dpi=250) plt.savefig() plt.show()</pre>	
follicular length (278 cycles, median = 17.0, mean = 17.547, std = 5.141)	
120	
100	
80	
60	
40	
20	

© femtec health 2022 | A health and beauty sciences company

Research code

Scientific tools are different

- Ex Jupyter Notebook
- Line-by-line execution

Iterative approach

- Experimentation requires trial & error
- Lot of alternative code for different approaches
- Often incorporates with external tools (ex tensorboard for training)

Scientists are generalists

- "One solution to fits all" -> End up with long scripts that can do EVERYTHING
- Not specific to single problem (many trials)

Research code	Production code	Consequences / differences
Flexibility (can do everything)	Specialised (one purpose / fixed final version)	Full of redundant code
Manual usage	Automated repeated usage	No focus on stability, exception handling, and unit testing
Used by 1 person	Maintained by many people	Not following best practices
Row by row execution	Script execution	Not object oriented / pattern
Stand-alone	Interacting with system	No clear interfaces
Data from large data sets	One data point from stream	Data handling is different
Need parallelising within	Need parallelising around	Need restructuring and optimising

Machine learning code into production (bridging the chasm)

© femtec health 2022 | A health and beauty sciences company

Required infrastructure surrounding lifecycle of ML code

Source: "Hidden Technical Debt in Machine Learning Systems", NIPS 28 (2015) by Google

	Data collection Testing and debugging		d g	Resource management			
on	Data	ML code		Model analysis			Serving infrastructure
	vermoution			Process			
					management		
on	Feature engineerir	Ig	Metadata management				Monitoring

Who should implement all this glue code

Educate researchers to be good SW devs

NO!

- No interest / no skills in this area
- Focus on research / modelling / data processing

\mathcal{M}

Let SW devs build the code

Depends... SW glue: yes! ML glue: no!

- Parallel implementations
- Inconsistency problems
- Time to market

High level architecture

devops: infrastructure, integration, code versioning, automation, scaling, monitoring

© femtec health 2022 | A health and beauty sciences company

M

ML modules as microservices

© femtec health 2022 | A health and beauty sciences company

\mathcal{M}

Modularise the DS modules

Algorithm module

Kafka connector Input/output handling Logging and monitoring Unit testing Docker, Jenkins integration Setup. dependencies **Business logic** Load and execute a trained model

Infrastructure utilities

Microservices and modularising the common code

© femtec health 2022 | A health and beauty sciences company

\mathcal{M}

Inject trained models

Algorithm module

Kafka connector Input/output handling Logging and monitoring Unit testing Docker, Jenkins integration Setup. dependencies Business logic

Load and execute a trained model +

config

\mathcal{M}

Platform / framework for experimentation and evaluation

Trained model # n

Most popular ml-ops tools for managing ML life cycle

Kubeflow	mlflow
Google	Databricks
Tensorflow (TFX)	Python
Pipeline based	Experimentation
Deploy and manage complex ML systems	Tracking of exper
Kubernetes infrastructure (more complex)	Local or cloud, eg locally and track

ML lifecycle Architecture

\mathcal{N}

Data handling

Algorithm module

Predict using selected model

Run-id: 0edd84ca89b9435eb8773cd712070145

mlflow

mlflow Experiments Models

Experiments	+
Search Experiments	
Default	// 而
my_exp	⊻ ₪
pipeline1	_ ₪
prepare_data	_ ₪
train_pipe_0613	2

train_pipe_0613 🧻

0 T	rack mac	chine learni	ng trair	ning runs i	n an exp	eriment. Learn mo	ore												
Experir	ment ID :	4																	
► De	scriptior	n Edit																	
f gr	Refresh	Compa	are	Delete	Do	ownload CSV	↓ Start	Time 🗸	All time	\sim									
≔	⊞	愈Columr	ns	Only show	/ differer	ices 🔵 🕐	Q met	rics.rmse <	1 and pa	rams.model	= "tree"	Sea	irch	Ē	ilter	Clear			
Showin	ig 8 matc	hing runs																	
										Metrics <							Parame	eters	
	↓ Start	Time	Durat	tion Ru	n I User	Source	Version	Models		close score	closed cyc	cl ea	m	mean_thi	score	threshold	model	n_iter	run_id
	⊘ 2	4 minutes	6.1mi	in -	linda	🛄 train_pipel	1f7df2	😼 lowess	-gri/4	-2.597	0.35	(0.366	-2.629	0.175	se	20.0	4db38753
	⊘ 3	hours age	4.8mi	in -	linda	🛄 train_pipel	b4dfb3	🕵 lowess	-gri/3		0.361	•		0.359	-2.652	0.185	se	20.0	4db38753
	⊘ 3	hour age	4.4mi	in -	linda	🛄 train_pipel	b4dfb3	😼 lowess	-gri/2		0.344	2		0.364	-2.629	0.243	se	10.0	4db38753
	⊘ 4	hours age	4.5mi	in -	linda	🛄 train_pipel	b4dfb3	S lowess	-gri/1		0.362	•		0.358	-2.657	0.186	se	10.0	4db38753
	⊘ 4	ours age	21.7s	; _	linda	🛄 train_pipel	b4dfb3	S lowess	-gri/22	2	0.333	25		0.38	-3.167	0.194	se	2	08629a84
	Ø	hours age	11.6s		linda	🛄 train_pipel	1b6957	S lowess	-gri/20		0.556			0.257	-2.222	0.181	se	-	08629a84
	9 5	hours age	8.8s	3.23	linda	🛄 train_pipel	1b6957	😼 lowess	-gri/19	27	2,444	25		0.291	-2.444	0.194	se	2	08629a84
	⊘ 5	hours age	8.1s	-	linda	🛄 train_pipel	1b6957	😼 lowess	-gri/18	-	0.4.4	•		0.298	-2.444	0.173	se	-	08629a84

© femtec health 2022 | A health and beauty sciences company

Experimentation

Try out different models and data sets Track: parameters, metrics, and artifacts Comparison between experiments

Model registry

Store trained models for later use Load selected trained model by ID

Advantages

Tracking of experiments Reproducibility (models, params, data sets) Easy deployment of trained models

Everything needed for serving model is automatically saved

Project 👻 😤 🏹		EADM
Closing_algo - ~/work/repo/closing_algo CC-3383	-aw	
> 🖿 data	1	a
> 🖿 datahandler	2	f
> evaluate_algoworker	3	
Y Imiruns	6	
trash .	-	
Image: 0	5	
> Od2bd35b61b74f0da443838ed64becc4	6	
Oedd84ca89b9435eb8773cd712070145	7	
artifacts	8	
Closing-model	9	
conda.yaml	10	
🖆 MLmodel	11	
model.pkl	12	m
requirements.txt	13	r
> Ofbbff4079dc47b5a95ba74b0c2b9f84	14	U
> 1b3ede8c3f544abcad32686ba5b1a426	15	
> 1c84b30255de476b9ab8b5b44369e4d6		
Id537fbb1ab34da28bbd549c09d5b69f		
> 0001ea1ebb9e43fa9bfed912a1445e41		

\mathcal{M}

train.py × 📶 mlruns/.../conda.yaml × 🖆 False × 🖆 $E.md \times$ artifact_path: closing-model lavors: python_function: env: conda.yaml loader_module: mlflow.sklearn model_path: model.pkl python_version: 3.7.11 sklearn: pickled_model: model.pkl serialization_format: cloudpickle sklearn_version: 1.0.2 nodel_uuid: 2552f3fc84d14f9fbd3c7df4f198adea oun_id: 0edd84ca89b9435eb8773cd712070145 tc_time_created: '2022-03-22 17:17:04.702535'

Follow pattern from scikit-learn (sklearn)

```
class FertilityModel(BaseEstimator, ClassifierMixin, metaclass=abc.ABCMeta):
   MODEL = "algo_model"
   MODEL_PARAMETERS = "algo_model_parameters"
```

```
def ___init__(self):...
@abc.abstractmethod
def fit(self, X=None, y=None, sample_weight=None, check_input=True):...
@abc.abstractmethod
def predict(self, cycle: CycleData, *args, **kwargs) -> (np.ndarray, np.ndarray):...
```

```
@classmethod
def get_model_name(cls):...
```

```
def serialise(self) -> dict:...
```

```
def score(
    self, cycle: CycleData, true_fertility_indications, sample_weight=None
) -> float:...
```


Available functionality from *scikit-learn* (*sklearn*)

Standard classes eg:

- RandomForestClassifier
- BaggingClassifier
- GridSearchCV
- StandardScaler
- Pipeline

```
search_grid = close_model.get_parameter_filter(random_grid=True, **extra_kwargs)
grid_search_classifier = RandomizedSearchCV(
    close_model, search_grid, scoring=model_scorer, n_iter=int(n_iter)
```

```
pipeline = Pipeline(
```

```
pipeline.fit(cycle_lists[TRAIN_SPLIT_NAME])
mlflow.log_metrics(grid_search_classifier.best_params_)
df = pd.DataFrame(grid_search_classifier.cv_results_)
store_artifact_local_dump(
   artifact_name="cv_results.csv", dump_function=df.to_csv, index=False
```

```
score = pipeline.score(cycle_lists[TRAIN_SPLIT_NAME])
```

```
("smoother", LowessSignalSmoother(lowess_look_back_period, lowess_frac)),
("grid_search_classifier", grid_search_classifier),
```


Mlflow for experimentation and model serving

© femtec health 2022 | A health and beauty sciences company

\mathcal{M}

devops: infrastructure, integration, code versioning, automation, scaling, monitoring

Summary And challenges

Solution at ava

Separate data science modules as micro-services with clean interfaces to the rest of the system (most of the glue)

Separate parts of each data science module that is related to standard software tasks (some of the glue)

The core part is the models, the lifecyle is managed by a mlops tool and a trained model is stored in a blob

Remaining challenges

It is still possible to build a mess

- Follow best practices
- Recognize when code can be re-used
- Communication to prevent duplication

It is out of comfort zone for most researchers

- Different tools
- Outside core competences
- Need training and support
- Still some researchers will never go down this path...

ML engineer / SW developer is needed for parts

- To write the glue
- Use same libraries and language •
- Coordination and communication

Not solving all problems (eg. Example 1)

\mathcal{M}

conditions sperm

- and the solution is agile?

 Cross-functional teams: researchers and data engineers / sw devs T-shaped skills
 Pairing up, code review

✓ Work on different projects

Questions?

© femtec health 2022 | A health and beauty sciences company

\mathcal{M}

Thank you!

