goto;

GOTO
Copenhagen 2022

#GOTOcph

goto;

Serverlesspresso:
Building a Scalable,
Event-Driven Application

Julian Wood
Senior Developer Advocate
AWS Serverless

4{/) serverlesspresso

adws
2]

/- serverlesspresso

An event driven coffee ordering app
built with serverless architecture

adws
2]

About me
Julian Wood

Senior Developer Advocate — AWS Serverless

Recovering server“more” infrastructure engineer
Enterprises and startups
You can’'t scare me, | have twin girls!

From Cape Town via London

@julian_wood

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is Serverlesspresso?

Serverlesspresso is a coffee ordering app
built with serverless architecture:

Place an order on your mobile device.

2. The order appears on the monitor ~ -
and the barista's tablet app. u

3. You get a notification when the drink
is ready.

o y Try it out! Go to:
\ ~ serverlesspresso https://s12d.com/coffee

https://s12d.com/coffee

e+ 1,920 drinks in re:Invent
. 2021

« 71 drinks per hour

« Appeared at AWS
Summits, EDA Day,
GOTO, and others

« Averages 1,000 drinks
per day

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserve

SPresso

adws
]

R © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS global infrastructure

26 GEOGRAPHICAL REGIONS, 84 AVAILABILITY ZONES, 310+ POPS

O Region & number of Availability Zones (AZs)

GovCloud (U.S.) Europe -
U.S.-East (3), US-West (3) Frankfurt (3), Paris (3),
Ireland (3), Stockholm (3),

U.S. West London (3), Milan (3)
Oregon (4)
Northern California (3) 9
@)@ 9 ®@

U.S. East Middle East ? 9
N. Virginia (6), Ohio (3) Bahrain (3)

S
Canada Asia Pacific
Central (3) Singapore (3), Sydney (3), Jakarta (3),

South America
Sdo Paulo (3)

Africa
Cape Town (3)

Tokyo (4), Osaka (3)
Seoul (4), Mumbai (3), Hong Kong (3)

China
Beijing (2), Ningxia (3)

O Announced Regions

8 Regions and 24 AZs in Australia, Canada, India, Israel, Australia, Switzerland,
Spain, and United Arab Emirates (UAE)

dWs
~—

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is serverless?

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is serverless?

B\

No infrastructure provisioning,
Nno management

Automatic scaling

Pay for value

aws

S

Highly available and secure

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serverless means:

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Greater agility

Less operations
Serverless means: 1°r€ product focus
Faster time to market

Cost that grows with
your business

aws
2]

4{/) serverlesspresso

adws
2]

The Display Web App

VUE.JS APPS HOSTED WITH AWS AMPLIFY CONSOLE

» Shows new barcode every 5
m | n S serverlesspresso

- Receives order status updates

- Listens for store open/close
events

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The Ordering Web App

VUE.JS APPS HOSTED WITH AWS AMPLIFY CONSOLE

7:57 @4 09% 7:58 P4 W65% 7:59 O 4095% 8:00 ®4095%

E} serverlesspresso @ serverlesspresso @ serverlesspresso @) serverlesspresso

Order #91 Order #91 Order #91

Look out for your order on the big Your order is being made Ready for collection
screen

CHOOSE A SERVERLESS DRINK:

ESPRESSO AMERICANO CAPPUCCINO

r« "
FLAT WHITE CORTADO

v w v

YOUR ORDER:

Americano

Order Now

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The Barista Web App

VUE.JS APPS HOSTED WITH AWS AMPLIFY CONSOLE

« Shows incoming orders

#91 Americano

« Allows baristas to pick up
incoming orders

« Enables order completion or
cancellation

« Enables store open/close
events

e Prints tickets

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Serverless services used

AWS Amplify Amazon Amazon Amazon
Console API Gateway DynamoDB EventBridge

AWS Step AWS AWS
Functions loT Core Lambda

SHAJ serverlesspresso

© 2022, Amazon Web Services,

Inc. or its affiliates. All rights reserved.

High level architecture

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Guidelines we used

Architecture goals: Tenets:

+ Minimal code Each team member

. Extensibility responsible for one component
. Scalability - No implementation sharing

. Cost efficiency - Each microservice has

APl/events — no data sharing

adws
2]

How it works

Ordering
app

Display
app

Barista
app

&%

/

aws

N1

REST
API

REST
API

WebSocket
API|

AWS Account

Order Manager service

E:I
O - =
| | — |
API Step DynamoDB
Gateway Functions table

QR validator service

N | —
D-Q—=
[| m— |

API|

Lambda
function

DynamoDB

Gateway table

Publisher service

@ —®

loT Core Lambda
function

@ EventBridge
Event bus
Events
Events
Events
EventBridge
rules Events
N
e
Events
<«

3;':"? Step Functions
Order processing workflow

DynamoDB Get Shop status
Shop Open?
ListExecutions
Is capacity available?

Emit - Workflow Started TT

Emit - Shop not ready

Generate Order Number

Emit - Awaiting Completion TT

Barista timedout

Emit - order finished

Customer timedout

Emit - error timeout

[/ serverlesspresso

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How it works

aws

~ AWS Account

& Front ends

Order Manager service @ EventBridge g:%' Step Functions
REST Event bus Order processing workflow

AP/ | — Events
o (Moo=
| —
[| m—
API

J

Step DynamoDB

Events

Ordering

|
|
|
1
1
1
1
app !
1
1
I R validator service i
. Q
1
1
1
1

Events

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 "
1

1

! | m— 3 '
| REST E [m]i] Is capacity available?
| o o—
: API
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

. Emit - Shop not ready Emit - Workflow Started TT
Display Lambda DynamoDB

app

Gateway function table
Generate Order Number

Publisher service

@ Barista timedout
WebSocket

- API Y, Events
Barista | H % Emit - order finished Emit - error timeout
app

| loT Core Lambda @
) function

1

1

1

1

1

I .

: EventBridge . -
: rules Events
1

1

1

1

1

Front Ends

A\ [/, serverlesspresso 3 web apps hosted on Amazon S3

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How it works

aws

~ AWS Account

& Front ends

Order Manager service @ EventBridge g:%' Step Functions
REST Event bus Order processing workflow

API || — | Events
o N DN —
o | —
[| m—|

J

API Step DynamoDB

Events

Ordering

|
|
|
1
1
1
1
app !
1
1
I R validator service i
. Q
1
1
1
1

Events

I
I
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 .
1
1
' o "
' NN =
, [B ac—
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

. Emit - Shop not ready Emit - Workflow Started TT
Display API Lambda DynamoDB

app

Gateway function table
Generate Order Number

1

1

1

1

1

1

: EventBridge . - 7
:) rules Events Emit - Awaiting Completion TT
1

1

1

1

1

@ Barista timedout
WebSocket

D API Events

app

1

1

| loT

| oT Core Lambda @
| function

1

Access Layer

APls provide access to business logic
HAN serverlesspresso ESRGGIGE]

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How it works

aws

~ AWS Account

& Front ends

Order Manager service @ EventBridge g:%' Step Functions
REST Event bus Order processing workflow

AP/ | — Events
ol N IN-=
| —
[| m—

J

API Step DynamoDB

Events

Ordering

|
|
|
1
1
1
1
app !
1
1
I R validator service i i
. Q
1
1
1
1

Events

I
I
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1
' oc— S
| REST o=
: ;l R G Ve =
, [B [[—
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Emit - Shop not ready Emit - Workflow Started TT
API Lambda DynamoDB

Display !

1

app ! Gateway function table
:
1
I EventBridge .
. Publisher service
: @ Barista timedout
X WebSocket

_ . API Evdhts
app

1

1

1 loT

, oT Core Lambda @
| function

1

Events

Serverless event bus delivers multiple
QO l/, serverlesspresso messages about the state of each order

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How it works

aws

~ AWS Account

& Front ends

Order Manager service @ EventBridge g:%' Step Functions
REST Event bus Order processing workflow

AP/ | — Events
ol (MoBlE
| —
[| m—
API

J

Step DynamoDB

Events

Ordering

|
|
|
1
1
1
1
app !
1
1
I R validator service i
. Q
1
1
1
1

Events

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 :
1

1

: [| —))
1 REST > Ol] Is capacity available?
| o o—
: API
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Emit - Shop not ready Emit - Workflow Started TT
Lambda DynamoDB

Display :
app ! Gateway function table
: Generate Order Number
1
I offtBridge
1 . .
. Publisher service
: @ Barista timedout
X WebSocket
A 1 API Events
Barista <— Emit - order finished
app

i loT Core ;‘j:;:’lgi @
Events
Rules, route events to the relevant

A\ l/, serverlesspresso downstream service

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How it works

aws

~ AWS Account

& Front ends

Order Manager service @ EventBridge g:%' Step Functions
REST Event bus Order processing workflow

API || — | Events
o N DN —
o | —
[| m—|

J

API Step DynamoDB

Events

Ordering

|
|
|
1
1
1
1
app !
1
1
I R validator service i i
. Q
1
1
1
1

Events

I
I
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1
' oc— S
| REST o=
: ;l R G Ve =
, [B [[—
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Emit - Shop not ready Emit - Workflow Started TT
API Lambda DynamoDB

Display !

1

app ! Gateway function table
:
1
I EventBridge .
. Publisher service
: @ Barista timedout
X WebSocket

A 1 API Events
app

1

1

| loT

| oT Core Lambda @
| function

1

Orchestration

AWS Step Functions orchestrates each
A\ l/, serverlesspresso order from start to completion

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How it works

aws

~ AWS Account

& Front ends

Order Manager service @ EventBridge g:%' Step Functions
REST Event bus Order processing workflow

AP/ | — Events
o (Moo=
| —
[| m—
API

J

Step DynamoDB

Events

Ordering

|
|
|
1
1
1
1
app !
1
1
I R validator service i
. Q
1
1
1
1

Events

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 "
1

1

! | m— 3 '
| REST E [m]i] Is capacity available?
| o o—
: API
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Emit - Shop not ready Emit - Workflow Started TT
Lambda DynamoDB

Display :
app ! Gateway function table
: Generate Order Number
1
I EventBridge .
. Publisher service
: @ Barista timedout
X WebSocket
A 1 API Events
CENNE % Emit - order finished Emit - error timeout
app

Realtime

loT topic updates web front ends

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

aws

S

QR validator service

Throttles the queue to 10 drinks every 5 minutes
and prevents unauthorized orders

QR code generation

* A new QR code every 5 minutes.

« Valid for 10 scans.

We are making drinks!

« Hidden once all scans are “used”.

10 drink(s) remaining.

We will accept new orders soon.

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserve

QR code generation

QR validator service

Generate
. GET
» The display app makes a request ;l >()— QY
to generate the QR code and store Display oty fomcion
the ID in DynamoDB.
i
Validate
o I = POST
The Ordering app, makes a POST RO
request to validate the QR code i
and ID app ateway function
aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

S

Token bucket system

When a valid QR is scanned, it decrements the Available tokens number
and emits an event that triggers the order processor workflow.

Available tokens Last_code Start_ts
1234423 10 1645200599999 41g_-KJHGT 1234423 1645200300000
1234123 8 1645628399999 6KJH_-FJ5Lh 1234123 1645628100000
5412322 1 1645449599999 91HHFFJHF 5412322 1645449300000
3435657 2 1645435199999 0OCZomT756 3435657 1645434900000

DynamoDB validator-table

aws

S

© 2022, Amazon

Web Services, Inc. or its affiliates. All rights reserved.

Order Processor service

Orchestrates each order from start to completion

adws
2]

AWS Step Functions

F

ULLY MANAGED STATE MACHINES ON AWS

Resilient workflow automation
Built-in error handling
Powerful AWS service integration

First-class support for integrating
with
your own services

Auditable execution history and
visual monitoring

aws
2]

Define the workflow... &

DEFINE ALL THE STEPS IN. MAKING A DRINK

Process for making a drink,

1) Check the store Ls open

2) et barista aapa&ﬁtg

3) Walt for the customer ovder — cancel if >
5 LS

4) Generate an order numbeyr =

5) wait for barista to make drink - A= —
=25 wmins —— e

&) Also hawodle cancelation bg cms‘comer Or
baristn

Step Functions Workflow Studio info

Q

Flow

MOST POPULAR

AWS Lamb

. Invoke

@E ;u ;[I-Sh -

Amazo

l Ru nTask

AWS __J P runctions
StartExecution

AWS Glue
StartJobRun

COMPUTE

5} Amazon Data Lifecycle ...

IL_ Amazon EBS

Amazon EC2

B E

Elastic Inference

F

AWS EC2 Instance Conn...

9 Undo

\

C Redo

e
EventBridge: PutEvents

Emlt Shop not ready

® Zoom in

CODE WITH STATE MACHINES

& Zoom out

® Center

Start

y
Lambda: Invoke

Get Shop Status

L J

Choice state |
Shop Open?

Lambda: Invoke

., Get Capacity Status

|

|

L i
Choice state

Capacity Avialable?

13 entBr I PutEvents
éL [mlt Workﬂow Started TT

¥
Lambda: Invoke
Generate Order Number

Cancel

... then design visually with Workflow Studio

REPLACE SPAGHETTI

Export ¥ ‘ ‘

Form

Definition

Shop Open?

State name

Shop Open?

State type
Choice

Rule #1

Input

Output

not{$.StoreOpen.modified.storeOpen == true)

Default rule

Defines default state wh

en na

&

-+ Add new choice rule

Comment - optional

check if Capacity is available

-

rule evaluates To o

which state

Managing each coffee's journey

USING AWS STEP FUNCTIONS TO MANAGE EACH WORKFLOW EXECUTION

- Workflow ensures store is open and -
baristas have capacity

Get Shop Status
| £ P

« Allows customer 5 minutes to order .
before timing out / cancelling

« Allows barista 15 minutes to make
before timing out / cancelling

« Uses Lambda functions for custom
logic; uses direct service | i o e T |
integrations otherwise |

¥
Lambda: Invoke
Generate Order Number

il

L]
2ntBridge: PutEven

@ Emit - Waiting Completion TT

|

i

‘ P Wait state

‘ (5 LOG - In Production
|

|

|

|

|

|

\\ |/

serverlesspresso

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PREPAR

Latte

- ll'*ﬁl

llll}'

SLO-MO VIDEO PHOTO

aws

S N\

SQUARE

Emit- Shop not ready

Collect drink, learn about the order
7 journey, and share.
for a one-time login code.

Start

Get Shop Status

Check shop is ready, wait for
customer to submit order.

Shop Open?
Get Capacity Status

Capacity Avialable?

Resumes workflow which
generates new order
number. Wait for barista to

complete order.

Emit - Workflow Started TT
Generate Order Number
LOG - In Production

Emit - Waiting Completion TT

Barista makes drink.

Workflow resumes and

e €MItS order completion
event.

Did baristar |l customer cancel 7 Barista timedout

order was cancelled

Emit - order finished

Success

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

End |

Order Manager service

Handles order persistence to DynamoDB

adws
2]

Order table

Each order is persisted to a DynamoDB table.
The entry is updated at various stages of the order lifecycle.

SK TS UIiD OrderNo TaskToken OrderState DrinkOrder
Orders 2 1645726 10 JAVAVAVAY (e JAVAVAVAYVAVAVAVAVAVAVAV.AV SR @O] 71 2] M2 R 2 D) {"userld":"1","drink":"Cappuccino","modifiers":[]
346199 L Alp4umOgPw/FO3rqpCDVIE ,"icon":"barista-icons_cappuccino-alternative"}
AL+l/h+

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

APl Gateway to DynamoDB

rder Manager service
/myOrders - GET oreerene

/orders - GET LI1[] =

j

o Ordering Display Barista
/O rderS/{ld} = GET app app app Gat\eF\’,IVay Dyrj(:g}gDB
Front end applications query #set($subFromIwT = $context.authorizer.claims.sub)
Order table directly from API o - .
TableName": "serverlesspresso-order-table",
Gateway. "IndexName": "GSI-userId",

"KeyConditionExpression": "#USERID = :USERID",
"ExpressionAttributeNames": {

. . "#USERID": "USERID"
Velocity mapping templates Y
. H . "ExpressionAttributevalues": {
modify the incoming request. e
"s": "$subFromIiwT"
}
1,
"ScanIndexForward": true,
"ProjectionExpression": "PK, SK, orderNumber, robot, drinkorder, ORDERSTATE, TS"
}
adws
~—"

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

CRUD operations

/myOrders - GET
Jorders - GET

/orders/{id} - GET o

Jorders/{id} - PUT

Updates are made to the Order table via a
PUT request.

aws

S

GET

Order Manager service

. | —
oc—J
@ [|
[| —
API DynamoDB

Gateway table

PUT :
> =

API
Gateway

© 2022, Amazon

Step
Functions

Web Services, Inc. or its affiliates. All rights reserve

Order Manager service as a Lambda function
Version 1

Each operation invokes a Lambda Function

&

API
Gateway

l@

API
Gateway

;

API
Gateway

|

API
Gateway

aws

S

cancel

|

Complete

make

Create

Update
Resume

Update
Resume

Update
Resume

DynamoDB
SFN

DynamoDB
SFN

DynamoDB
SFN

Sanitize order

update
Resume

DynamoDB
SFN

Application grew more complex over time,
performing multiple tasks to handle
increasingly complex business logic,
leading to

Tightly coupled code base
Slower release cadence

Poor discoverability

Additional complexity

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Order Manager service as a workflow

A single API Gateway end point runs a
Step Functions workflow Choic state

Decide Action

Pass state Pa

.—| |_| a
‘7 cancel Order 7 comple

Customer Put Order

ynamoDE
get menu

La
] Sanitize order

Is Order Valid?

noDB: Updateltem
ate order

d state . Step Functions 1dTaskSuccgs
Resume Order Processor

not a valid order

aws

S

_| I - ate
I.._ _..' Construct record

EventBridge: PutEvents

EventBridge Emit Making Order

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Communicate
between micro-
services using events

aws

S

Order i

i Manager <—>

1
service
1

QR
' validator
| service

i Publisher i
. service !

Order
journey
service

Config

@ EventBridge %:é'

Event bus

Order
processing
workflow

Events

EventBridge
rules

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is an event?

USING AMAZON EVENTBRIDGE FOR CHOREOGRAPHING MICROSERVICES

. . . {
- Aneventis defined in JSON S
" T . . ., "id": "bacde27b-1234-1234-1234-5tb©2c886319",
¢ DEta|l) appl|cat|0n SpECIfIC "detail-type": "OrderProcessor.OrderStarted”,
"source": "awsserverlessda.serverlesspresso”,
+ Envelope attributes are provided by "account”: "123456789012",
. "time": "2021-11-28T13:12:37",
Amazon EventBridge RSyl
"detail™: {
« Producers create events "userId": "jbesw",
. "orderId": "eYmAfqlLD67vlbdUVile D",
« Consumers choose which events to "drinkOrder”: {
. . "icon": "barista-icons_cafe-latte”
listen to by using rules o oriacons cafertatien,

"drink"™: "Latte"

SHAL serverlesspresso

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserve

Serverlesspresso events

15 EVENTS

ConfigService.ConfigChanged
OrderJourney.AllEventsStored
OrderManager.MakeOrder
OrderManager.OrderCancelled
OrderManager.WaitingCompletion
OrderProcessor.OrderTimeOut
OrderProcessor.ShopNotready
OrderProcessor.WaitingCompletion
OrderProcessor.WaitingProduction
10 OrderProcessor.WorkflowStarted
11.QueueService.OrderCancelled
12.QueueService.OrderCompleted
13.Validator.NewOrder
14.QueueService.OrderStarted
15.0rderManager.OrderCompleted

WoONGOULAWDND=

SHAL serverlesspresso

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

mailto:awsserverlessda.serverlesspresso@OrderManager.MakeOrder

 Serverless—pay only for the events you
process

A
@ E\lr:::g:id ge

A serverless event bus service for

AWS services, your own applications,) NO upfront inve§tments, ongoing
and SaaS$ providers licensing, or maintenance costs

Simplified scaling avoids increasing
costs to sustain and manage resources

* No specialist knowledge needed

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event-driven architectures

USING AMAZON EVENTBRIDGE FOR CHOREOGRAPHING MICROSERVICES

- Event flow drives the application =
. Events choreograph the services, oder | e B Sencoicne €
while Step Functions orchestrates Manoger &~
the transactions
' QR : Events
i validator H
| serviee |
:’ __________ : Order
i Publisher : Events Events proceessing

service | workflow
]

SHAL serverlesspresso

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserve

Event-driven architectures

USING AMAZON EVENTBRIDGE FOR CHOREOGRAPHING MICROSERVICES

- Event flow drives the application

« Events choreograph the services,
while Step Functions orchestrates
the transactions

« Add new microservices as event
consumers without changing
existing code

« Microservices emit events
independently of consumers

SHAL serverlesspresso

! Order
' Manager |
service

QR

service

Publisher i
service

Order

| .

' journey :
service

———————————

Config

@ EventBridge %:é'

Events Event bus

Events

i validator i%

Events Events

Events EventBridge
rules

Events

Order
processing
workflow

© 2022, Amazon Web Services, Inc. or

its affiliates. All rights reserve

aws

S

Handling async responses
with real-time updates

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Handling response values and state for
asynchronous requests

Client Service A Service B
(............... ﬁ .
Ack
No return path to provide further information E
beyond the initial acknowledgement
Asynchronous
events

aws

N1 © 2022, Amazon Web Services, Inc

. or its affiliates. All rights reserve

Tracking an inflight request: Polling

—— Endpoint

Please do a thing. » Initial request returns a tracking identifier

) » Create a second API endpoint for the front end to
check the status of the request, referencing the

tracking ID

Is it ready yet?

pd
~

Is it ready yet? « Use DynamoDB or another data store to track the

state of the request

Is it ready yet? « Simple mechanism to implement

pd
~

Here's the DATA « Can create many empty calls

Is it ready yet?

« Delay between availability and front-end notification

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserve

Tracking an inflight request: WebSocket

—— Endpoint
Please do a thing.

> « A bidirectional connection between the front end
OK client and the backend service

<
~

* Your backend services can continue to send data back
to the client by using a WebSocket connection

 C(Closer to real time

« Reduces the number of messages between the client

< and backend system
Here's the DATA

« Often more complex to implement

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Using AWS loT Core for real-time messaging

Web applications often require partial information:

amera s T 20:33 om <Cameram = 20:34 am < Cameraw| & 20:34 am)
AA @ orderserverlesscoffeecom ¢ AA @ orderserverlesscoffeecom ¢ & e o o
(_‘i % SGI‘VQI’IGSSDFGSSO
(j % serverlesspresso ﬂ % serverlesspresso
our order is in the queue Order #1

Order #1

Ready for collection
our o

75%

Completion percentages Continuous data changes

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Using AWS loT Core for real-time messaging

Front end application uses pub-sub to “listen” for event updates

B
AWS loT Core
[IVIj h

Messages
Publishing
function

Front end application

Subscribe to topic ‘ Subscriptions

AWS SDK { Messages loT topic

Front end uses AWS SDK to subscribe to a topic based on user’'s unique user ID.

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Using AWS loT Core for real-time messaging

Front end application uses pub-sub to “listen” for event updates

Front end application

Subscribe to topic Subscriptions

AWS SDK EMessages .

B o

M AWS loT Core
O

loT topic

<

Messages
Publishing
function

Receives messages published by the backend

aws

S

to this topic.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Using AWS loT Core for real-time messaging

Front end application uses pub-sub to “listen” for event updates

B s o
AWS loT Core
) @ =

Front end application

Subscribe to topic Subscriptions

¢

AWS SDK { Messages loT topic

Messages
Publishing
function

Messages are categorized using topics. Topic names are UTF 8 encoded strings.

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Using AWS loT Core for real-time messaging

Front end application uses pub-sub to “listen” for event updates

__

1

o

——

Front end application

B s o ‘&

| o :VS:C;em @—
© L2 [6one | @

AWS SDK : :Messages loT topics

Subscribe to topic ESubscriptions

&

Publishing
' services !

The loT core service manages the WebSocket connection between backend publishers
and front-end subscribers.

This enables fanout functionality to thousands front-end devices.

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Using AWS loT Core for real-time messaging

The lotData class in the AWS SDK returns a client that uses the MQTT protocol

Front End app

mgttClient.on ('connect', function () {

console.log('mgttClient connected’) Once the frontend
}) application establishes
the connection, it returns
mgttClient.on ('error', function (err) { messages, errors, and
console.log('mgttClient error: ', err) connection status via
}) callbacks.

mgttClient.on ('message', function (topic, payload) {
const msg = JSON.parse (payload.toString())
console.log('IoT msg: ', topilic, msQg)

})

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Combining multiple approaches for
your front-end application

Many front-end applications can combine synchronous and asynchronous response models.

Front ends | Config service
.e

I

I

_| :

l API

DynamoDB !

. | Gateway ytable !

_o ! ! '
I
I
I

Serverlesspresso sends an initial synchronous request to retrieve the current “state of things.”

SHAA serverlesspresso

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Combining multiple approaches for

your front-end application

Many front-end applications can combine synchronous and asynchronous response models.

Front ends | Config service
.
I API DynamoDB ' roo T T T
| : : Gateway table : ' Publisher service
1

: Barista i
N ! app ! Subscribe to topics Ej Ej ‘

Lambda

|
loT Topics
' pi function

Simultaneously the front end subscribes to global and user-based IoT topics.

SHAA serverlesspresso

© 2022, Amazon

Web Services,

Inc. or

its affiliates. All rights reserve

d.

Combining multiple approaches for
your front-end application

Asynchronous backend processes

Front ends : : Config service
I |
1 1 |
b @ — Ord;art
.:7: API : ________________________
| I 1 DynamoDB ! '
- ' | Gateway table ' Publisher service
5 A S HB}
1
Barista : ‘
app : Publish update
'_ |
1
I

loT Topics

New orders are posted to the application, and processed asynchronously, with updates published
to the font end via the loT topic.

SHAA serverlesspresso

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What does it cost to run this workload?
We can serve up to 960 drinks to 960 customers every day

Service

With Free Tier

Daily cost

AWS Amplify Console $0.28 Free
Amazon API Gateway $0.01 Free
Amazon Cognito $0.00 Free
Amazon DynamoDB $0.01 Free
Amazon EventBridge $0.01 Free
AWS loT Core $0.01 Free
AWS Lambda $0.01 Free
Amazon SNS (SMS messages) $7.98 $7.98
AWS Step Functions $0.29 Free
TOTAL $7.98 + $0.53 $7.98

ALK serverlesspresso

Learn about the AWS Free Tier:
https://aws.amazon.com/free

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Summary

Microservices: communicate with events; use APIs if outward facing.
For choreography, use an event bus to route events.
For orchestration, use Step Functions to orchestrate resources within a microservice
Use lIoT Core to maintain open connection for asynchronous responses

Combining orchestration with choreography can create highly extensible,
low-code, cost effective workloads.

—

b \’:) serverlesspresso

An event driven coffee ordering app
built with serverless architecture

aws

N1 © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A New Blogs Videos Learn Events - Patterns About

Welcome to
Serverless
Land

This site brings together all the latest blogs, videos, and
training for AWS Serverless. Learn to use and build apps that
scale automatically on low-cost, fully-managed serverless

architecture.

Learn More

For more serverless learning resources, visit:
https://serverlessland.com

aws

S

Thank you

-\0\\3“ B

006

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

goto;

Don't forget to
rate this session
in the GOTO Guide app

