
Author

Dad

Minecraft
designer/developer/coach

www.crisp.se

Consultant
Henrik Kniberg
henrik.kniberg@crisp.se

@HenrikKniberg

Climate
entrepreneurAgile product design from

the trenches GoClimate.com

GOTO 2022, Copenhagen

Henrik Kniberg

The design is not just what
it looks like and feels like.

The design is how it works.

- Famous fruit company guy

00:49

Context

Minecraft in numbers
• Created 2009, initial release 2011
• > 170 million monthly active players
• Player demographic: All ages (but average age 24)

Henrik Kniberg

Sources:
• https://en.wikipedia.org/wiki/Minecraft
• https://en.wikipedia.org/wiki/List_of_best-selling_video_games
• https://www.pcgamesn.com/minecraft/player-age
• https://www.statista.com/statistics/680124/minecraft-unit-sales-worldwide/

Number of copies sold (in millions)

Henrik Kniberg

2018
Make oceans more

fun! 2019

2020
Make the Nether dimension

more fun!

Themed updates

2021 Make the World more fun!

Make villages more
fun!

Aim for the clouds, but deliver in small steps

Snapshots/Betas every week

Henrik Kniberg

Aim for the clouds, but deliver in small steps

Spring 2020
Make the Nether dimension

more fun!

2 week sprint 2 week sprint 2 week sprint

Henrik Kniberg

Stable release
1-2 times per year

Snapshot every week

00:49

How a feature is
born

How a typical feature is born

Henrik Kniberg

1. Start with a problem
statement, feature idea,
or design goal 5. Improve it based

on player feedback

4. Implement a
snapshotable
version

6. Stabilize & fix
bugs & weird
edge cases

2. Make lots of prototypes to
explore the design space

3. Narrow it down to
the single most
promising design

Discarded prototypes.

This is not waste! It is the
cost of innovation.

Beware local optimas

Henrik Kniberg

Don’t get stuck iteratively improving the first solution you came up with

Finding the Awesome

Henrik Kniberg

Fun Technically feasible

Achieves the
design goal

Gameplay + Tech =

Henrik Kniberg

Gameplay
perspective Tech

perspective

Where is the
Fun?

How can we
implement it?

Adapt the tech
to what we want

Adapt what we want
to the tech we have

Prototypes Tech spikes

Exploring the design space of a feature

Henrik Kniberg

Gameplay value

Technical cost/risk/uncertainty

High

Low

HighLow

meh

Exploring the design space of a feature
Using prototyping, tech spikes, and snapshots

Henrik Kniberg

Gameplay value

Technical cost/risk/uncertainty

High

Low

HighLow

? !
?!
!

?

!

? = Hypothesis
about gameplay value and technical cost/risk/uncertainty

! = Validation (prototype)
what the prototype or tech spike indicates

! = Validation (beta/snapshot)
how it actually turned out

Hypothesis
Prototype

Prototype
Hypothesis

Hypothesis

Snapshot

Snapshot

KYD

Henrik Kniberg

?
Hypothesis

!
Prototype

?
HypothesisGameplay value

Technical cost/risk/uncertainty

High

Low

HighLow

!
Prototype

My darling

Don’t focus on code quality too early

Henrik Kniberg
Snapshots Release

S S S S S

00:49

Design is its own craft,
but should be tightly

integrated with
development

“Design owner” = mini-producer for a game feature

Henrik Kniberg

Community feedback
Run playtests

Workshops

Code

Decisions & tradeoffs

Research

Prototype

Coordinate

Document

Tweak & balance

Demo

Debug
Scope management
within the feature

Track status

Should design be separate thing from development?

Henrik Kniberg

DevelopmentDesign

Design +
Development

Or should these things be done
together?

Development includes design + coding

Henrik Kniberg

CodingDesign

Design docs are useful!
But keep them brief and changeable.

Design is a craft

Henrik Kniberg

Like other crafts in a cross-functional development team

Designer craft needs to collaborate (across teams)

Henrik Kniberg

Like all crafts really!
Team A

Team B

Team C

Design craft

Henrik Kniberg

00:49

Prototypes come in
all shapes and sizes

Example: Piglins & Hoglins

Henrik Kniberg

Piglin Hoglin

Design goal
Give life to the Nether dimension.
Should feel like an ecosystem!

Player stories

Henrik Kniberg

Piglin Hoglin

Example: Piglins & Hoglins

Henrik Kniberg

Design goal
Give life to the Nether dimension.
Should feel like an ecosystem!

Idea: Piglins hunt
hoglins for food

Iterating on hunting logic using
paper prototyping

Henrik Kniberg

Hoglin ==> Piglin
• I never initiate attack against Piglin.
• When hurt, I attack back.
• If I see another Hoglin in battle then join the battle
• When I hurt a piglin, decide whether to continue fighting or flee
• If we don't outnumber Piglins, I flee a random distance, faster than

piglin. May move out of combat range.
• If we outnumber piglins, stay and fight.

Piglin ==> Hoglin
• If I haven't seen a hoglin die in a while, and I see one now, then start

fighting.
• If I see another Piglin in battle then join the battle
• When hurt, I decide whether to keep fighting or flee.
• If I'm outnumbered, I flee (and stop being aggressive), avoid that

hoglin for a while.
• If not outnumbered, I stay and fight.
• If I have crossbow, I will always keep a minimum distance from piglin

Henrik Kniberg

In-game prototype gradually refined to production quality

Henrik Kniberg

When implementing a feature, what do we do with the prototype?

Throw away
the prototype

and start
fresh!

Option A

Start from
the prototype

and iterate
from there

Option B

Either option is fine!
Let the team decide case by case.

Hypothesis: ear flopping is fun and useful way to convey emotion

Henrik Kniberg

Angry

ExcitedIdle

Scared

Conclusion: Cool but not worth the effort

Circus piglins

Henrik Kniberg

Accidental discovery.
Conclusion: Cute, fun, simple. Keep it!

Testing the limits.....

Henrik Kniberg

Sometimes we make prototypes just to learn how stuff works...

Henrik Kniberg

We toned it down a bit

Henrik Kniberg

Test your design continuously!

Henrik Kniberg

Invest in tools & overlays to help improve and debug the design

Henrik Kniberg

Concept Art is also a form of prototyping

Oops! The new caves all get flooded below sea level!

Henrik Kniberg

Wait, what if we still allow some caves to be flooded?

Henrik Kniberg

Prototype: lower the sea level and try it out!

Result: Aquifers (local water levels)

Henrik Kniberg

Lava aquifers!

Henrik Kniberg

Pattern: Use the product itself as a prototyping tool

Henrik Kniberg

Source: https://successstory.com/photos/people/kjeld-kirk-kristiansen

00:49

Don’t be too
obsessed with

”potentially shippable
product increment”

50

51

Example: Dripstone

Henrik Kniberg

Henrik Kniberg

Henrik Kniberg

Pointed dripstone subfeature ideas

If broken, the entire
stalactite falls
down and hurts
anyone below

Hurts to fall on a
stalagmite

Can be broken if
you throw a

trident

Drips
water

Can fill a
cauldronGrows slowly

over time
....

....

Prototyping is all about learning fast

Henrik Kniberg

Prototype
(hack!)

Performance,
code cleanup,

weird edge cases,
bug fixes,

configurability,
automated tests,

etc....

Initial
implementation

Subfeature A Subfeature B Subfeature C

Prototype
(hack!)

Performance,
code cleanup,

weird edge cases,
bug fixes,

configurability,
automated tests,

etc....

Initial
implementation

Prototype
(hack!)

Performance,
code cleanup,

weird edge cases,
bug fixes,

configurability,
automated tests,

etc....

Initial
implementation

Fast,
lots of learning

Slow,
little learning

Subfeature D

Prototype
(hack!)

Performance,
code cleanup,

weird edge cases,
bug fixes,

configurability,
automated tests,

etc....

Initial
implementation

Scrum-by-the-book approach

Henrik Kniberg

Prototype
(hack!)

Performance,
code cleanup,

weird edge cases,
bug fixes,

configurability,
automated tests,

etc....

Initial
implementation

Subfeature A Subfeature B Subfeature C

Prototype
(hack!)

Performance,
code cleanup,

weird edge cases,
bug fixes,

configurability,
automated tests,

etc....

Initial
implementation

Prototype
(hack!)

Performance,
code cleanup,

weird edge cases,
bug fixes,

configurability,
automated tests,

etc....

Initial
implementation

1 2 3

Subfeature D

Prototype
(hack!)

Performance,
code cleanup,

weird edge cases,
bug fixes,

configurability,
automated tests,

etc....

Initial
implementation

4

Fast,
lots of learning

Slow,
little learning

Systemic learning-optimized approach

Henrik Kniberg

Prototype
(hack!)

Performance,
code cleanup,

weird edge cases,
bug fixes,

configurability,
automated tests,

etc....

Initial
implementation

Subfeature A Subfeature B Subfeature C

Prototype
(hack!)

Performance,
code cleanup,

weird edge cases,
bug fixes,

configurability,
automated tests,

etc....

Initial
implementation

Prototype
(hack!)

Performance,
code cleanup,

weird edge cases,
bug fixes,

configurability,
automated tests,

etc....

Initial
implementation

Subfeature D

Prototype
(hack!)

Performance,
code cleanup,

weird edge cases,
bug fixes,

configurability,
automated tests,

etc....

Initial
implementation

2 3

1

4

5

6

Fast,
lots of learning

Slow,
little learning

Test automation is great!
But later when the design is somewhat stable.

Henrik Kniberg

Test automation verifies that the feature works as expected

Henrik Kniberg

…. but not that the feature is any good

00:49

Feedback

Minimize the gap!

Henrik Kniberg

Maker User

Minimize the gap!

Henrik Kniberg

1 2 3

People
handoffs/intermediaries

Time
(feedback delay)

Maker User

Minimize the gap!

Henrik Kniberg

1 2 3

People
handoffs/intermediaries

Time
(feedback delay)

Maker User

OK but HOW?

How to communicate with users when there are millions?

Henrik Kniberg

Henrik Kniberg

Data

User feedback &
interaction

Gut feel
of experienced
designer / domain expert

Sources of insight & decision making

Example: Public bug tracker
(yes, anyone can add tickets!)

Henrik Kniberg

Social media (watching videos & streams)

Henrik Kniberg

Social media (interacting)

Henrik Kniberg

Mini surveys

Henrik Kniberg

Beware of feedback selection bias

Henrik Kniberg

People who play minecraft

People who post stuff
on Internet

People who
are LOUD
on Internet

Youtubers
Twitchers
Redditers
Twitterers

*-ers

People actually just
playing the game

Hanging out with the real players

Henrik Kniberg

Henrik Kniberg

You can also get feedback BEFORE releasing

Henrik Kniberg

00:49

Simple is usually better(and often harder)

Scope

Value

Don’t be a hostage to your feature

Henrik Kniberg

This is the LAST
tweak!

For real this time!

Stockholm Syndrome
- a condition in which hostages develop a psychological bond with
their captors during captivity

Henrik Kniberg

Very cheerful fellow

Perfection is achieved, not when
there is nothing more to add, but

when there is nothing left to
take away.

Half of all quotes are
attributed to the wrong

person

Christopher Colombus

Village children

Henrik Kniberg

Goal: Village children play with
each other to make the villages feel
more alive.

Henrik Kniberg

Simple rules create dynamics and
illusion of play

1. Am I being chased?Run!
2.Someone else being chased?

Join the chase!
3.Nobody being chased? Boring!

Start chasing someone!

…. Max 5 kids involved in a chase

Ruined portals

Henrik Kniberg

Goal: Help players discover the
Nether dimension and figure out
how to get there. Inspire players to
speculate about their origins.

Ruined portals

Henrik Kniberg

We simplified the design, to
encourage players to improve
them or build on them.

Simple structured inspired the players to improve or complete them

Henrik Kniberg

T

Wrapup

Discarded prototypes
are not waste, they are
crucial for great design

Continuously involve
users and developers in

the design

Optimize for
speed of learning

Code quality matters,
but not before the

design has stabilized

Thanks for listening!
Henrik Kniberg
Oct 2022

Effective prototyping
helps you discover

opportunities and risks
early (both design and

tech)

Design is its own craft,
but should be tightly

integrated with
development

