
@rtfeldman

Functional Programming
for Pragmatists

95%

5%

why?

weighs less
no battery
smaller

more torque
higher RPM
less twisting

95%

5%

functional

imperative

why?

simpler
more elegant
reason about

weighs less
no battery
smaller

specific
objective
tradeoffs

Functional Programming
for Pragmatists

Scope

Performance

Development

Ecosystem

OUTLINE

Scope

Performance

Development

Ecosystem

What is functional programming?

(can be done in any language with procedures)

functional programming style

avoid mutation

avoid side effects

primarily encourage using the functional style

functional programming languages

(but may still support mutation and side effects)

support only pure functions

pure functional programming languages

(sometimes with escape hatches such as FFI)

IN SCOPE

pattern matching

polymorphism

type checking

immutability

pure functions

functional languages

NOT IN SCOPE

Scope

Performance

Development

Ecosystem

Scope

Performance

Development

Ecosystem

Caching

Precomputing

Parallelizing

Performance Drawbacks

PERFORMANCE

pure functions

same arguments? same return value

no side effects

returns

stringLength

argument
2
4

10

"Hi"
"GOTO"
"Copenhagen"

pure functions are basically lookup tables

stringLength

key value
2
4

"Hi"
"GOTO"
"Copenhagen"

pure functions are basically lookup tables

10

pure functions are basically lookup tables

“Could this function’s body be replaced with

one big lookup table access?”

how to tell if a function is pure:

next time you’re about to call it, check if the arguments
are in the lookup table. If so, return the stored answer.

memoization lets you skip running a costly function

whenever you call the function, store its return value
in a lookup table keyed on the argument(s)

CACHING

Pure functional languages can rule out these bugs.

Problem: if a pure function starts calling a function
that isn’t pure...it stops being pure!
...but memoizing it may still work sometimes

CACHING

pure functions are safely memoizable by definition

stringLength "Copenhagen"

Any call to a pure function where all arguments are

known at build time can be precomputed at build time.

stringLength conferenceName

constant propagation, inlining, and constant folding

PRECOMPUTING

10

users.map(formatPhoneNumber)

user1 user2 user3 user4 user5 …

new1 new2 new3 new4 new5 …

formatPhoneNumber

PARALLELIZING

user1 user2 user3 user4 user5 …

new1 new2 new3 new4 new5 …

formatPhoneNumber

users.mapParallel(formatPhoneNumber)

pure function?

PARALLELIZING

Parallel function calls may be run in any order

Pure functions are thread-safe by definition

In a pure FP language, thread safety is not a concern

Data races can only happen when mutation happens

PARALLELIZING

Managed effects can have nonzero overhead

In-place mutation usually runs the fastest

PERFORMANCE DRAWBACKS

promise1 = fetch(url)

promise2 =
 fetch(url2)
 .then(callback)

SIDE EFFECTS MANAGED EFFECTS

task1 = fetch url

task2 =
 fetch url2
 |> andThen callback

runs when instantiated given to main to run later

Managed effects can have nonzero overhead

(optimizations can reduce it to zero overhead)

In-place mutation usually runs the fastest

PERFORMANCE DRAWBACKS

youtu.be/vzfy4EKwG_Y

PERFORMANCE DRAWBACKS

Scope

Performance

Development

Ecosystem

Scope

Performance

Development

Ecosystem

Testing

Revising

Debugging

Development Drawbacks

DEVELOPMENT

FLAKY TESTS
TESTING

are caused by race conditions and effects

minimizing side effects minimizes effects

TESTING

hundreds of thousands of lines of Elm tests

zero flakes ever elm-lang.org

Managed effects can be tested by simulation

Examples: Test.Html, elm-program-test

TESTING

No effects? No mocking needed.

phone = formatPhoneNum(user)

isValid = checkValid(user)

REVISING

isValid = checkValid(user)

phone = formatPhoneNum(user)

REVISING

BUG!

mutates user

mutation annotations

isValid = checkValid(user)

phone = formatPhoneNum(user)

REVISING

BUG!

writes to a database

reads from that database

isValid = checkValid(user)
phone = formatPhoneNum(user)

REVISING

Pure functions never rely on call order

phone = formatPhoneNum(user)
isValid = checkValid(user)

Global mutable variables are bad

DEBUGGING

Global variables create implicit dependencies

DEBUGGING

int countMessages(user);

input: user
output: int If this value is wrong…which

functions might be to blame?

DEBUGGING

int countMessages(user);

int global1;

input: user
output: int

DEBUGGING

int countMessages(user);

int global1;

input: user, global1
output: int

DEBUGGING

int countMessages(user);

int global1;

input: user, global1
output: int, global1

DEBUGGING

int countMessages(user);

int global1;
int global2;

input: user, global1, global2
output: int, global1, global2

If this value is wrong…which
functions might be to blame?

DEBUGGING

int countMessages(user);

int global1;
int global2;

input: user, global1, global2
output: int, global1, global2

how to debug a global: step through all function calls

could be any of them!

Global mutable variables are bad

DEBUGGING

Global variables create implicit dependencies

Side effects are bad

Side effects create implicit dependencies

how to debug: step through countMessages

DEBUGGING

input: user
output: int If this value is wrong…which

functions might be to blame?

// pure function
int countMessages(user);

DEBUGGING

input: user
output: int

// function with side effects
int countMessages(user);

DEBUGGING

input: user, database state, a remote server’s state…
output: int

// function with side effects
int countMessages(user);

DEBUGGING

input: user, database state, a remote server’s state…
output: int, database state, a remote server’s state…

// function with side effects
int countMessages(user);

DEBUGGING

// function with side effects
int countMessages(user);

input: user, database state, a remote server’s state…
output: int, database state, a remote server’s state…

(remote database) If this state is wrong…which
functions might be to blame?

could be any of them!

how to debug: step through all function calls

DEBUGGING

// pure function
int countMessages(user);

input: user
output: int

(remote database) If this state is wrong…which
functions might be to blame?

debug only functions that return wrapped effects

not this one!

DEBUGGING

// pure function
Task countMessages(user);

input: user
output: Task

(remote database) If this state is wrong…which
functions might be to blame?

debug only functions that return wrapped effects

maybe this one!

DEBUGGING
(remote database) If this state is wrong…which

functions might be to blame?

debug only functions that return wrapped effects

search space
(side effects)

search space (pure functions)

DEBUGGING
(remote database) If this state is wrong…which

functions might be to blame?

debug only functions that return wrapped effects

search space
(side effects)

search space (pure functions)

DEVELOPMENT DRAWBACKS

explicit dependencies are more verbose

managed effects make functions colorful

What Color is Your Function? bit.ly/30cJjKT

Scope

Performance

Development

Ecosystem

Scope

Performance

Development

Ecosystem

ECOSYSTEM

imperative style

a pure function that calls
a non-pure function
is no longer a pure function

functional style

might this be what changed my DB?
what inputs does this depend on?
does this rely on call order?
could this flake in a test?
can I precompute this?
can I memoize this?
is this thread-safe?

 Nope!
 user
 Nope!
 Nope!
 Sure!
 Sure!
 Yep!

ECOSYSTEM

int countMessages(user);
...I think?// pure function

might this be what changed my DB?
what inputs does this depend on?
does this rely on call order?
could this flake in a test?
can I precompute this?
can I memoize this?
is this thread-safe?

 Nope!
 user
 Nope!
 Nope!
 Sure!
 Sure!
 Yep!

ECOSYSTEM

int countMessages(user);
// oops not pure anymore

ECOSYSTEM

confidence?functional style

largely imperative style

ECOSYSTEM

confidence✓pure functional language

package.elm-lang.org

100% pure functions

elm-lang.org

might this be what changed my DB?
what inputs does this depend on?
does this rely on call order?
could this flake in a test?
can I precompute this?
can I memoize this?
is this thread-safe?

ECOSYSTEM

int countMessages(user);
// oops not pure anymore

might this be what changed my DB?
what inputs does this depend on?
does this rely on call order?
could this flake in a test?
can I precompute this?
can I memoize this?
is this thread-safe?

 Nope!
 user
 Nope!
 Nope!
 Sure!
 Sure!
 Yep!

ECOSYSTEM

int countMessages(user);

thinking about the problem at hand

ECOSYSTEM

int countMessages(user);

95%

5%

functional

imperative

SUMMARY

IN SCOPE

pattern matching

polymorphism

type checking

immutability

pure functions

functional languages

NOT IN SCOPE

simpler
more elegant
reason about

specific
objective
tradeoffs

caching
parallelizing
precomputing

testing
revising
debugging

♡

ecosystems
FP style
FP language

I still want both

in my toolbox

95%

5%

functional

imperative

@rtfeldman

