
Cloud-Native
Progressive Delivery

Matt Turner
GOTO, Copenhagen Denmark | November 2021 @mt165 | mt165.co.uk

How Does Cloud-Native Enable This?

12 Factor Apps

12 Factor Apps

III. External Config

I. Code in git

Docker

Docker

II. Isolate Dependencies

Docker

II. Isolate Dependencies

V. Strictly separate build
and run

Microservices

Gateway

Adaptor

Adaptor

Adaptor

Backend

Backend

Backend

Microservices

Gateway

Adaptor

Adaptor

Adaptor

Kubernetes

Service Mesh

Metrics

Metrics

“RED”

● Rate - requests / second
● Errors - errors (%)
● Duration - latency of responses

Service Levels

● SLA - Service Level Agreement - broad statement of what’s on offer, reads
like a contract

● SLO - Service Level Objective - measurable, quantified target for availability,
performance, etc. Eg error rate %, latency ms.

● SLI - Service Level Indicator - how will we measure the service level? How
are we measuring things? Where? How are we aggregating them?

Infrastructure-as-Code & Declarative Systems

● Everything is described as “code” (needs an API)
● Eg Terraform, Kubernetes YAMLs
● No more click-ops!

GitOps

● Git as the single source of truth for everything
● Uses IaC to describe the desired state
● Committed to git
● Reconciled to the world
● Enables Operations via git (rather that by ticket)

Deployments Now

Continuous Integration

● These days actually means Continuous Build
● Original meaning still relevant and coming later

Deployment

● Taking a software package and running it

Continuous Deployment

● Deploying every time there’s a new build

Progressive Delivery

Release

● Exposing a piece of software to users

Continuous Release

● Exposing users to every new Deployment
● => Exposing them to every new Build

Deployment ==
Release?

Deployment !=
Release!
We Have the Technology!

X. Dev/Prod Parity
Keep development, staging, and
production as similar as possible

Build

Contract

● Triggered by a new commit to main
● Produces a new container image and push to the registry
● Bottom of the testing pyramid: Linting, Compilation, Unit Testing

Deploy

♻

♻

♻

♻

♻

♻

♻ ♻

♻

Contract

● Triggered by a new image appearing
● Deploys to prod cluster, prod namespace
● No user traffic

♻

♻

♻

♻

Isolation

● Does it even start?
● Available for manual testing
● Automated integration testing
● Automated end-to-end testing
● Automated non-functional testing

○ Failed if performance isn’t within SLO

♻

♻

🔍

♻

🔍

♻

🔍

Read-Only

● Gets a mirror of user traffic, but responses dropped
● What’s its Service Level? - crash rate, error rate, performance
● Compare results, if helpful

Release

♻

♻

♻

Progressive Roll-Out

● Sends 1% of user traffic to new version
● Monitor all SLIs for a period of time
● If it’s within the SLOs, add 1% more traffic

Roll-back

● If it fails SLO at any point, all traffic sent back to the old version
● New version left running for inspection
● Alert raised

Thanks!
@mt165

Slides
Videos

Demo code
mt165.co.uk

