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How Does Cloud-Native Enable This?





12 Factor Apps



12 Factor Apps

III. External Config

I. Code in git





Docker
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II. Isolate Dependencies



Docker

II. Isolate Dependencies

V. Strictly separate build 
and run
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Kubernetes



Service Mesh



Metrics



Metrics

“RED”

● Rate - requests / second
● Errors - errors (%)
● Duration - latency of responses



Service Levels

● SLA - Service Level Agreement - broad statement of what’s on offer, reads 
like a contract

● SLO - Service Level Objective - measurable, quantified target for availability, 
performance, etc. Eg error rate %, latency ms.

● SLI - Service Level Indicator - how will we measure the service level? How 
are we measuring things? Where? How are we aggregating them?



Infrastructure-as-Code & Declarative Systems

● Everything is described as “code” (needs an API)
● Eg Terraform, Kubernetes YAMLs
● No more click-ops!



GitOps

● Git as the single source of truth for everything
● Uses IaC to describe the desired state
● Committed to git
● Reconciled to the world
● Enables Operations via git (rather that by ticket)



Deployments Now



Continuous Integration

● These days actually means Continuous Build
● Original meaning still relevant and coming later



Deployment

● Taking a software package and running it



Continuous Deployment

● Deploying every time there’s a new build



Progressive Delivery



Release

● Exposing a piece of software to users



Continuous Release

● Exposing users to every new Deployment
● => Exposing them to every new Build



Deployment == 
Release?



Deployment != 
Release!
We Have the Technology!



X. Dev/Prod Parity
Keep development, staging, and 
production as similar as possible



Build







Contract

● Triggered by a new commit to main
● Produces a new container image and push to the registry
● Bottom of the testing pyramid: Linting, Compilation, Unit Testing



Deploy
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Contract

● Triggered by a new image appearing
● Deploys to prod cluster, prod namespace
● No user traffic
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Isolation

● Does it even start?
● Available for manual testing
● Automated integration testing
● Automated end-to-end testing
● Automated non-functional testing

○ Failed if performance isn’t within SLO
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Read-Only

● Gets a mirror of user traffic, but responses dropped
● What’s its Service Level? - crash rate, error rate, performance
● Compare results, if helpful



Release
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Progressive Roll-Out

● Sends 1% of user traffic to new version
● Monitor all SLIs for a period of time
● If it’s within the SLOs, add 1% more traffic

Roll-back

● If it fails SLO at any point, all traffic sent back to the old version
● New version left running for inspection
● Alert raised
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