

Simon Brown
@simonbrown

Diagrams as code 2.0

@simonbrown

+ some free and open source tooling for
creating software architecture diagrams

@simonbrown

Teams need a ubiquitous language
to communicate effectively

@simonbrown

Fewer people are using UML

@simonbrown

#2 “Not everybody else on the team knows it.”
#3 “I’m the only person on the team who knows it.”

#36 “You’ll be seen as old.”
#37 “You’ll be seen as old-fashioned.”

#66 “The tooling sucks.”
#80 “It’s too detailed.”

#81 “It’s a very elaborate waste of time.”
#92 “It’s not expected in agile.”

#97 “The value is in the conversation.”

@simonbrown

“just use a whiteboard;
the value is in the conversation”

@simonbrown

@simonbrown

If you’re going to use “boxes & lines”,
at least do so in a structured way,
using a self-describing notation

@simonbrown

C4
c4model.com

Zoom in

Zoom in

Level 1

Context
Level 2

Containers
Level 3

Components
Level 4

Code

Zoom in

The C4 model for visualising
software architecture

c4model.com

@simonbrown

Diagrams are maps
that help software developers navigate a large and/or complex codebase

@simonbrown

System Context diagram
What is the scope of the software system we’re building?

Who is using it? What are they doing?
What system integrations does it need to support?

@simonbrown

@simonbrown

Container diagram
What are the major technology building blocks?

What are their responsibilities?
How do they communicate?

@simonbrown

@simonbrown

The C4 model is
notation independent

@simonbrown

A common set of abstractions
is more important

than a common notation

Tooling?

@simonbrown

@simonbrown

“Diagrams as code” is easy to author,
diff, version control, collaborate on,

integrate into CI/CD, etc

@simonbrown

Diagramming
vs

modelling

@simonbrown

@startuml(id=SystemLandscape)
!includeurl https://raw.githubusercontent.com/plantuml-stdlib/C4-PlantUML/master/C4.puml
!includeurl https://raw.githubusercontent.com/plantuml-stdlib/C4-PlantUML/master/C4_Context.puml
!includeurl https://raw.githubusercontent.com/plantuml-stdlib/C4-PlantUML/master/C4_Container.puml
!includeurl https://raw.githubusercontent.com/plantuml-stdlib/C4-PlantUML/master/C4_Component.puml
LAYOUT_WITH_LEGEND()

title System Landscape for Big Bank plc

Person_Ext(1, "Personal Banking Customer", "A customer of the bank, with personal bank accounts.")
package "Big Bank plc" {
 Person(3, "Back Office Staff", "Administration and support staff within the bank.")
 Person(2, "Customer Service Staff", "Customer service staff within the bank.")
 System(6, "ATM", "Allows customers to withdraw cash.")
 System(5, "E-mail System", "The internal Microsoft Exchange e-mail system")
 System(7, "Internet Banking System", "Allows customers to view information about their bank accounts, and make payments.")
 System(4, "Mainframe Banking System", "Stores all of the core banking information about customers, accounts, transactions, etc.")
}
Rel_D(6, 4, "Uses", "")
Rel_D(3, 4, "Uses", "")
Rel_D(2, 4, "Uses", "")
Rel_D(5, 1, "Sends e-mails to", "")
Rel_D(7, 5, "Sends e-mail using", "")
Rel_D(7, 4, "Gets account information from, and makes payments using", "")
Rel_D(1, 6, "Withdraws cash using", "")
Rel_D(1, 2, "Asks questions to", "Telephone")
Rel_D(1, 7, "Views account balances, and makes payments using", "")
@enduml

You

@startuml(id=SystemContext)
!includeurl https://raw.githubusercontent.com/plantuml-stdlib/C4-PlantUML/master/C4.puml
!includeurl https://raw.githubusercontent.com/plantuml-stdlib/C4-PlantUML/master/C4_Context.puml
!includeurl https://raw.githubusercontent.com/plantuml-stdlib/C4-PlantUML/master/C4_Container.puml
!includeurl https://raw.githubusercontent.com/plantuml-stdlib/C4-PlantUML/master/C4_Component.puml
LAYOUT_WITH_LEGEND()

title Internet Banking System - System Context

Person_Ext(1, "Personal Banking Customer", "A customer of the bank, with personal bank accounts.")
package "Big Bank plc" {
 System(5, "E-mail System", "The internal Microsoft Exchange e-mail system")
 System(7, "Internet Banking System", "Allows customers to view information about their bank accounts, and make payments.")
 System(4, "Mainframe Banking System", "Stores all of the core banking information about customers, accounts, transactions, etc.")
}
Rel_D(5, 1, "Sends e-mails to", "")
Rel_D(7, 5, "Sends e-mail using", "")
Rel_D(7, 4, "Gets account information from, and makes payments using", "")
Rel_D(1, 7, "Views account balances, and makes payments using", "")
@enduml

Diagrams as code 1.0
You create and maintain multiple diagrams,

remembering to keep them all in sync
whenever you change a diagram

Create and maintain

@simonbrown

You

Diagrams as code 2.0
You create and maintain a single model, and the tool
generates multiple diagrams, automatically keeping

them all in sync whenever you change the model

workspace "Big Bank plc" "This is an example workspace to illustrate the key features of Structurizr, via the DSL, based around a fictional online banking system." {

 model {
 customer = person "Personal Banking Customer" "A customer of the bank, with personal bank accounts."

 enterprise "Big Bank plc" {
 supportStaff = person "Customer Service Staff" "Customer service staff within the bank." "Bank Staff"
 backoffice = person "Back Office Staff" "Administration and support staff within the bank." "Bank Staff"

 mainframe = softwaresystem "Mainframe Banking System" "Stores all of the core banking information about customers, accounts, transactions, etc." "Existing System"
 email = softwaresystem "E-mail System" "The internal Microsoft Exchange e-mail system" "Existing System"
 atm = softwaresystem "ATM" "Allows customers to withdraw cash." "Existing System"

 internetBankingSystem = softwaresystem "Internet Banking System" "Allows customers to view information about their bank accounts, and make payments." {
 singlePageApplication = container "Single-Page Application" "Provides all of the Internet banking functionality to customers via their web browser." "JavaScript and Angular" "Web Browser"
 mobileApp = container "Mobile App" "Provides a limited subset of the Internet banking functionality to customers via their mobile device." "Xamarin" "Mobile App"
 webApplication = container "Web Application" "Delivers the static content and the Internet banking single page application." "Java and Spring MVC"
 apiApplication = container "API Application" "Provides Internet banking functionality via a JSON/HTTPS API." "Java and Spring MVC" {
 signinController = component "Sign In Controller" "Allows users to sign in to the Internet Banking System." "Spring MVC Rest Controller"
 accountsSummaryController = component "Accounts Summary Controller" "Provides customers with a summary of their bank accounts." "Spring MVC Rest Controller"
 resetPasswordController = component "Reset Password Controller" "Allows users to reset their passwords with a single use URL." "Spring MVC Rest Controller"
 securityComponent = component "Security Component" "Provides functionality related to signing in, changing passwords, etc." "Spring Bean"
 mainframeBankingSystemFacade = component "Mainframe Banking System Facade" "A facade onto the mainframe banking system." "Spring Bean"
 emailComponent = component "E-mail Component" "Sends e-mails to users." "Spring Bean"
 }
 database = container "Database" "Stores user registration information, hashed authentication credentials, access logs, etc." "Oracle Database Schema" "Database"
 }

 }

 # relationships between people and software systems
 uses = customer -> internetBankingSystem "Views account balances, and makes payments using"
 internetBankingSystem -> mainframe "Gets account information from, and makes payments using"
 internetBankingSystem -> email "Sends e-mail using"
 email -> customer "Sends e-mails to"
 customer -> supportStaff "Asks questions to" "Telephone"
 supportStaff -> mainframe "Uses"
 customer -> atm "Withdraws cash using"
 atm -> mainframe "Uses"
 backoffice -> mainframe "Uses"

 # relationships to/from containers
 customer -> webApplication "Visits bigbank.com/ib using" "HTTPS"
 customer -> singlePageApplication "Views account balances, and makes payments using"
 customer -> mobileApp "Views account balances, and makes payments using"
 webApplication -> singlePageApplication "Delivers to the customer's web browser"

 # relationships to/from components
 singlePageApplication -> signinController "Makes API calls to" "JSON/HTTPS"
 singlePageApplication -> accountsSummaryController "Makes API calls to" "JSON/HTTPS"
 singlePageApplication -> resetPasswordController "Makes API calls to" "JSON/HTTPS"
 mobileApp -> signinController "Makes API calls to" "JSON/HTTPS"
 mobileApp -> accountsSummaryController "Makes API calls to" "JSON/HTTPS"
 mobileApp -> resetPasswordController "Makes API calls to" "JSON/HTTPS"
 signinController -> securityComponent "Uses"
 accountsSummaryController -> mainframeBankingSystemFacade "Uses"
 resetPasswordController -> securityComponent "Uses"
 resetPasswordController -> emailComponent "Uses"
 securityComponent -> database "Reads from and writes to" "JDBC"
 mainframeBankingSystemFacade -> mainframe "Makes API calls to" "XML/HTTPS"
 emailComponent -> email "Sends e-mail using"

…

Create and maintain

Automatically generates

@simonbrown
https://github.com/structurizr/dsl

Domain concepts
(not “boxes and lines”)

@startuml
title Software System - System Context

top to bottom direction

hide stereotype

rectangle "==User\n<size:10>[Person]</size>" <<User>> as User
rectangle "==Software System\n<size:10>[Software System]</size>" <<SoftwareSystem>> as SoftwareSystem

User ..> SoftwareSystem : "Uses"
@enduml

Domain language of diagramming
(no rules, no guidance)

workspace {

 model {
 user = person "User"
 softwareSystem = softwareSystem "Software System"

 user -> softwareSystem "Uses"
 }

 views {
 systemContext softwareSystem {
 include *
 autoLayout
 }
 }

}

Domain language of software architecture
(metamodel and rules)

Model-based
(DRY)

workspace {

 model {
 user = person "User"
 softwareSystem = softwareSystem "Software System"

 user -> softwareSystem "Uses"

 }

 views {
 systemContext softwareSystem {
 include *
 autoLayout
 }

 }

}

workspace {

 model {
 user = person "User"
 softwareSystem = softwareSystem "Software System" {
 webapp = container "Web Application"
 database = container "Database"
 }

 user -> webapp "Uses"
 webapp -> database "Reads from and writes to"
 }

 views {
 systemContext softwareSystem {
 include *
 autoLayout
 }

 container softwareSystem {
 include *
 autolayout
 }
 }

}

@simonbrown

Unspecified relationships can
be implied from the model

user -> webapp "Uses"
webapp -> database "Reads from and writes to"

user -> softwareSystem "Uses"

@simonbrown

Implied relationships
can be disabled using:

!impliedRelationships false

Separation of content
and presentation

@simonbrown

HTML & CSS

workspace {

 model {
 user = person "User"
 softwareSystem = softwareSystem "Software System" {
 webapp = container "Web Application"
 database = container "Database"
 }

 user -> webapp "Uses"
 webapp -> database "Reads from and writes to"
 }

 views {
 systemContext softwareSystem {
 include *
 autoLayout
 }

 container softwareSystem {
 include *
 autolayout
 }
 }

}

workspace {

 model {
 user = person "User"
 softwareSystem = softwareSystem "Software System" {
 webapp = container "Web Application"
 database = container "Database"
 }

 user -> webapp "Uses"
 webapp -> database "Reads from and writes to"
 }

 views {
 systemContext softwareSystem {
 include *
 autoLayout
 }

 container softwareSystem {
 include *
 autolayout
 }

 theme default
 }

@simonbrown

@simonbrown

@simonbrown

Styling of elements and
relationships is achieved

via tags

workspace {

 model {
 softwareSystem "Software System"
 }

 views {
 systemLandscape {
 include *
 autolayout
 }

 styles {
 element "Software System" {
 background #1168bd
 color #ffffff
 shape RoundedBox
 }
 }
 }

}

workspace {

 model {
 softwareSystem "Software System"
 }

 views {
 systemLandscape {
 include *
 autolayout
 }

 styles {
 element "Software System" {
 background #1168bd
 color #ffffff
 shape RoundedBox
 }
 }
 }

}

Rendering tool
independent

@simonbrown

“Diagrams as code 1.0”
PlantUML, Mermaid, etc are input formats

@simonbrown

“Diagrams as code 2.0”
PlantUML, Mermaid, etc are output formats

@simonbrown

Automatic layout
vs

manual layout?

@simonbrown
https://structurizr.com/help/lite

@simonbrown
https://github.com/structurizr/cli

./structurizr.sh export -workspace /Users/simon/bigbankplc/workspace.dsl -format plantuml

Exporting workspace from /Users/simon/bigbankplc/workspace.dsl
 - loading workspace from DSL
 - using StructurizrPlantUMLExporter
 - writing /Users/simon/bigbankplc/structurizr-SystemLandscape.puml
 - writing /Users/simon/bigbankplc/structurizr-SystemContext.puml
 - writing /Users/simon/bigbankplc/structurizr-Containers.puml
 - writing /Users/simon/bigbankplc/structurizr-Components.puml
 - writing /Users/simon/bigbankplc/structurizr-SignIn.puml
 - writing /Users/simon/bigbankplc/structurizr-LiveDeployment.puml
 - writing /Users/simon/bigbankplc/structurizr-DevelopmentDeployment.puml
 - writing /Users/simon/bigbankplc/structurizr-SignIn-sequence.puml
 - finished

More advanced features

@simonbrown

How do you diagram large and
complex software systems?

@simonbrown

@simonbrown

@simonbrown

container softwareSystem {
 include user ->service1->
 autolayout
}

@simonbrown

container softwareSystem {
 include ->service2->
 autolayout
}

@simonbrown

@simonbrown

@simonbrown

@simonbrown

Enterprise-wide modelling?

@simonbrown

Software systems and people
system-landscape.dsl

Software System 1
software-system-1.dsl

extends
system-landscape.dsl

Software System 2
software-system-2.dsl

extends
system-landscape.dsl

Software System 3
software-system-3.dsl

extends
system-landscape.dsl

@simonbrown

Scripting support
(via JSR-223: Java Scripting API)

workspace {

 model {
 ...
 }

 !script groovy {
 workspace.views.createDefaultViews()
 workspace.views.views.each { it.disableAutomaticLayout() }
 }

}

@simonbrown

Plugin support
(via Java)

@simonbrown

Hybrid usage
(DSL and Java)

workspace {

 model {
 s = softwareSystem "Software System" {
 webapp = container "Web Application"
 database = container "Database" {
 webapp -> this "Reads from and writes to"
 }
 }
 }

 views {
 systemContext s {
 include *
 autoLayout lr
 }

 container s {
 include *
 autoLayout lr
 }
 }

}

StructurizrDslParser parser = new StructurizrDslParser();
parser.parse(new File("workspace.dsl"));

Workspace workspace = parser.getWorkspace();
Container webApplication = workspace.getModel()
 .getSoftwareSystemWithName("Software System”)
 .getContainerWithName(“Web Application");

// add components manually or via automatic extraction
...

// add a component view
ComponentView componentView = workspace.getViews()
 .createComponentView(webApplication, "Components", "Description");
componentView.addDefaultElements();
componentView.enableAutomaticLayout();

@simonbrown

Custom tooling

@simonbrown

Authoring tool
Create diagrams as code (Java, .NET,
TypeScript, Python, PHP, etc) or text

(DSL, YAML) via a number of different
authoring tools.

Rendering tool
Render views using multiple

diagramming tools and formats
(Structurizr cloud service/on-premises

installation, PlantUML, Mermaid,
WebSequenceDiagrams, Ilograph, etc).

Workspace
A workspace is the wrapper for a

software architecture model and views,
described using the C4 model and

an open JSON data format.

Custom tool
Your own tooling to parse the model
and views; for integration into other
rendering tools, dashboards, service

catalogs, etc.

Consumes

Creates Renders

Usage scenarios

@simonbrown

Static diagrams
(e.g. PNG/SVG)

@simonbrown

Interactive diagrams
(e.g. browser-based)

@simonbrown
https://structurizr.com/help/lite

docker run -it --rm -p 8080:8080 -v /Users/simon/bigbankplc/:/usr/local/structurizr structurizr/lite

!docs <directory name>

!adrs <directory name>

Closing thoughts

@simonbrown

“Diagrams as code” is easy to author,
diff, version control, collaborate on,

integrate into CI/CD, etc

@simonbrown

“Diagrams as code 2.0”
makes this model based,

separating content from presentation

@simonbrown

Developers
vs

non-developers?

@simonbrown

Store your diagrams and docs
in version control,

next to your source code

@simonbrown

“Publish” the diagrams and
documentation if necessary

@simonbrown

Up front design
vs

long-lived documentation?

@simonbrown

Think about diagrams as being
“disposable” artefacts

@simonbrown
https://structurizr.com/dsl

@simonbrown
https://github.com/structurizr/dsl/tree/master/docs/cookbook

@simonbrown

Thank you!

Simon Brown
@simonbrown

