
http://www.continuous-delivery.co.uk

Dave Farley
https://www.davefarley.net

@davefarley77

https://bit.ly/CDonYT

Engineering for Software
Amplifying Creativity

http://www.davefarley.net
http://www.davefarley.net
https://bit.ly/CDonYT

What Does

“Software Engineering”

Mean?

“The Things We Can’t Afford to Get Wrong”

“The Things We Can’t Afford to Get Wrong”

“The Things We Can’t Afford to Get Wrong”

This is NOT Our Problem!

DEPLOY

DEPLOYDEPLOY

We Can Recreate Entire

Systems for Free!

Engineering:

“Designing, Building & Repairing

things in a Principled way”

Alan Kay

Engineering:

Design for Failure

Alan Kay

(C)opyright Dave Farley 2017

All Engineering is not the same!

(C)opyright Dave Farley 2017

All Engineering is not the same!

Engineering *IS* About

Exploration & Discovery

 *
IS* About

Exploration & Discovery

Engineering

 *
IS* About

Exploration & Discovery
Software

Development

Optimise for Learning

Iteration
Optimise for Learning

Iteration
Feedback

Optimise for Learning

Iteration
Feedback

Incremental

Optimise for Learning

Iteration
Feedback

Incremental

Experimental

Optimise for Learning

Iteration
Feedback

Incremental

Experimental
Empirical

Optimise for Learning

Software Development

is also about

Managing Complexity

Optimise to Manage Complexity

Modularity
Optimise to Manage Complexity

Modularity

Abstraction

Optimise to Manage Complexity

Modularity

Separation of ConcernsAbstraction

Optimise to Manage Complexity

Modularity

Separation of ConcernsAbstraction

Loose Coupling

Optimise to Manage Complexity

Modularity

Separation of ConcernsAbstraction

Loose Coupling
Cohesion

Optimise to Manage Complexity

Principles of Applying Engineering Thinking
• Optimise for Learning

• Optimise to Manage/Limit Complexity

• Control the Variables

• Make Evidence Based Decisions
(Run the Experiments)

• Never Assume You Have the Correct Answer

• Find Ways to Falsify Ideas Simply
(More Experiments!)

Testability

What Do We Value In Good Code?

What Do We Value In Good Code?
• It Has to Work!

What Do We Value In Good Code?
• It Has to Work!

• Modular Modular

What Do We Value In Good Code?
• It Has to Work!

• Modular

• Loosely-coupled

Modular

Loose
Coupled

What Do We Value In Good Code?
• It Has to Work!

• Modular

• Loosely-coupled

• High-Cohesion

Modular

Loose
Coupled

High
Cohesion

What Do We Value In Good Code?
• It Has to Work!

• Modular

• Loosely-coupled

• High-Cohesion

• Good Separation of Concerns

Modular

Loose
Coupled

High
Cohesion

Separation
of

Concerns

What Do We Value In Good Code?
• It Has to Work!

• Modular

• Loosely-coupled

• High-Cohesion

• Good Separation of Concerns

• Exhibits Information Hiding

Modular

Loose
Coupled

High
Cohesion

Separation
of

Concerns

Information
Hiding

What Drives Quality? - Before TDD

What Drives Quality? - Before TDD

The Skill, Experience and Integrity
of an individual programmer.

TDD is…

TDD is…

Red
Green Refactor

Repeat!

TDD is…

Red
Green Refactor

Repeat!

• Write a Test - See it Fail

TDD is…

Red
Green Refactor

Repeat!

• Write a Test - See it Fail
• Write Code to Make the Test Pass - See it Pass

TDD is…

Red
Green Refactor

Repeat!

• Write a Test - See it Fail
• Write Code to Make the Test Pass - See it Pass
• Modify the Code to Make it Clean and Elegant

TDD is…

Red
Green Refactor

Repeat!

• Write a Test - See it Fail
• Write Code to Make the Test Pass - See it Pass
• Modify the Code to Make it Clean and Elegant
• Next Test…

What Makes Code Testable?

• It Has to Work!

What Makes Code Testable?

• It Has to Work!

• Modular Modular

What Makes Code Testable?

• It Has to Work!

• Modular

• Loosely-coupled

Modular

Loose
Coupled

What Makes Code Testable?

• It Has to Work!

• Modular

• Loosely-coupled

• High-Cohesion

Modular

Loose
Coupled

High
Cohesion

What Makes Code Testable?

• It Has to Work!

• Modular

• Loosely-coupled

• High-Cohesion

• Good Separation of Concerns

Modular

Loose
Coupled

High
Cohesion

Separation
of

Concerns

What Makes Code Testable?

• It Has to Work!

• Modular

• Loosely-coupled

• High-Cohesion

• Good Separation of Concerns

• Exhibits Information Hiding

Modular

Loose
Coupled

High
Cohesion

Separation
of

Concerns

Information
Hiding

What Makes Code Testable?

+

+

+

=
Modular

Loose
Coupled

High
Cohesion

Separation
of

Concerns

Information
Hiding

+

=
Modular

Loose
Coupled

High
Cohesion

Separation
of

Concerns

Information
Hiding()2

Working

Experimentally

Small Steps

Gather Feedback

Predict the Results

Control the Variables

Smart Automation - a repeatable, reliable process for releasing software

Unit Test CodeIdea Executable
spec. Build Release

What Really Works?

Smart Automation - a repeatable, reliable process for releasing software

Unit Test CodeIdea Executable
spec. Build Release

What Really Works?

Smart Automation - a repeatable, reliable process for releasing software

Unit Test CodeIdea Executable
spec. Build Release

“It doesn’t matter how intelligent you are, if
you guess and that guess cannot be backed
up by experimental evidence – then it is still a
guess!”
 - Richard Feynman

What Really Works?

Speed

Cycle-Time

103 days

Typical Traditional Cycle Time
10 days

64 days

Cycle-Time

Commit Stage
Compile
Unit test
Analysis

Build Installers

Automated
acceptance

testing

Automated
performance

testing

Manual testing

Release

57 mins

3 mins 20 mins

20 mins

30 mins

4 mins

Typical CD Cycle Time

103 days

Typical Traditional Cycle Time
10 days

64 days

What Is Continuous Delivery?
“Our highest priority is to satisfy the customer through early

and continuous delivery of valuable software.”

The first principle of the agile manifesto.

The logical extension of continuous integration.

A holistic approach to development.

Every commit creates a release candidate.

Finished means released into the hands of users, delivering value!

The Principles of Continuous Delivery
Create a repeatable, reliable process for releasing software.

Automate almost everything.

Keep everything under version control.

If it hurts, do it more often – bring the pain forward.

Build quality in.

Done means released.

Everybody is responsible for the release process.

Improve continuously.

The Principles of Continuous Delivery
Create a repeatable, reliable process for releasing software.

Automate almost everything.

Keep everything under version control.

If it hurts, do it more often – bring the pain forward.

Build quality in.

Done means released.

Everybody is responsible for the release process.

Improve continuously.

“If Agile software development
was the opening act to a great

performance, Continuous
Delivery is the headliner.”

Forrester Research 2013

Artifact
Repository

Local Dev. Env.

Acceptance
Commit

Component
Performance

System
Performance

Production Env.

Deployment
App.

Source
Repository

Manual Test Env.

Deployment
App.

Data
Migration

Artifact
Repository

Local Dev. Env.

Acceptance
Commit

Component
Performance

System
Performance

Production Env.

Deployment
App.

Source
Repository

Manual Test Env.

Deployment
App.

Data
Migration

From Commit
To Releasable Outcome

Artifact
Repository

Acceptance

Component
Performance

System
Performance

Production Env.

Deployment
App.

Manual Test Env.

Deployment
App.

Data
Migration

Local Dev. Env. Commit

Source
Repository

Artifact
Repository

Acceptance

Component
Performance

System
Performance

Production Env.

Deployment
App.

Manual Test Env.

Deployment
App.

Data
Migration

Local Dev. Env. Commit

Source
Repository

Continuous

Integration

< 5 mins

Artifact
Repository

Production Env.

Deployment
App.

Local Dev. Env.

Source
Repository

Commit
Acceptance

Component
Performance

System
Performance

Manual Test Env.

Deployment
App.

Data
Migration

Artifact
Repository

Production Env.

Deployment
App.

Local Dev. Env.

Source
Repository

Commit
Acceptance

Component
Performance

System
Performance

Manual Test Env.

Deployment
App.

Data
Migration

Releasable

Outcome

< 1 Hour

Engineering:

Design, Simulate, Build

Alan Kay

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

System
Performance

Production Env.

Source
Repository

Manual Test

Data
Migration

Engineering:

Design, Simulate, Build

Alan Kay

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

System
Performance

Production Env.

Source
Repository

Manual Test

Data
Migration

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

System
Performance

Production Env.

Source
Repository

Manual Test

Data
Migration

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

System
Performance

Production Env.

Source
Repository

Manual Test

Data
Migration

Design

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

System
Performance

Production Env.

Source
Repository

Manual Test

Data
Migration

Design

Simulate

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

System
Performance

Production Env.

Source
Repository

Manual Test

Data
Migration

Design

Simulate
Build

https://bit.ly/CDonYT

https://bit.ly/CDonYT

https://bit.ly/CDonYT

https://bit.ly/CDonYT

https://bit.ly/CDonYT

https://bit.ly/CDonYT

Use the Code:
MODERNSWENG

For 35% Off!

Pre-Order

➡ https://informit.com/modernsweng

Q&A

http://www.continuous-delivery.co.uk

Dave Farley

https://www.davefarley.net

@davefarley77

https://bit.ly/CDonYT

http://www.davefarley.net
http://www.davefarley.net
https://bit.ly/CDonYT

