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What Does 

“Software Engineering” 

Mean?
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This is NOT Our Problem!
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We Can Recreate Entire 

Systems for Free!





Engineering: 

“Designing, Building & Repairing 

things in a Principled way”

Alan Kay





Engineering: 

Design for Failure

Alan Kay
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Software Development 

is also about  

Managing Complexity
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Principles of Applying Engineering Thinking
• Optimise for Learning 

• Optimise to Manage/Limit Complexity 

• Control the Variables 

• Make Evidence Based Decisions 
(Run the Experiments) 

• Never Assume You Have the Correct Answer 

• Find Ways to Falsify Ideas Simply 
(More Experiments!)





Testability
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What Drives Quality? - Before TDD



What Drives Quality? - Before TDD

The Skill, Experience and Integrity
of an individual programmer.
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TDD is…

Red
Green Refactor

Repeat!

• Write a Test - See it Fail
• Write Code to Make the Test Pass - See it Pass
• Modify the Code to Make it Clean and Elegant
• Next Test…
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Working  

Experimentally

















Small Steps



Gather Feedback



Predict the Results



Control the Variables





Smart Automation - a repeatable, reliable process for releasing software

Unit Test CodeIdea Executable 
spec. Build Release

What Really Works?
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Smart Automation - a repeatable, reliable process for releasing software

Unit Test CodeIdea Executable 
spec. Build Release

“It doesn’t matter how intelligent you are, if 
you guess and that guess cannot be backed 
up by experimental evidence – then it is still a 
guess!” 
      - Richard Feynman

What Really Works?





Speed
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Cycle-Time

Commit Stage 
Compile 
Unit test 
Analysis 

Build Installers

Automated 
acceptance 

testing

Automated 
performance 

testing

Manual testing

Release

57 mins

3 mins 20 mins

20 mins

30 mins

4 mins

Typical CD Cycle Time

103 days

Typical Traditional Cycle Time
10 days

64 days



What Is Continuous Delivery?
“Our highest priority is to satisfy the customer through early 

and continuous delivery of valuable software.”

The first principle of the agile manifesto. 

The logical extension of continuous integration. 

A holistic approach to development. 

Every commit creates a release candidate. 

Finished means released into the hands of users, delivering value! 



The Principles of Continuous Delivery
Create a repeatable, reliable process for releasing software. 

Automate almost everything. 

Keep everything under version control. 

If it hurts, do it more often – bring the pain forward. 

Build quality in. 

Done means released. 

Everybody is responsible for the release process. 

Improve continuously.



The Principles of Continuous Delivery
Create a repeatable, reliable process for releasing software. 

Automate almost everything. 

Keep everything under version control. 

If it hurts, do it more often – bring the pain forward. 

Build quality in. 

Done means released. 

Everybody is responsible for the release process. 

Improve continuously.

“If Agile software development 
was the opening act to a great 

performance, Continuous 
Delivery is the headliner.” 

Forrester Research 2013
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Releasable 
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Use the Code: 
MODERNSWENG  

For 35% Off!

Pre-Order

➡ https://informit.com/modernsweng
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