

Hannes Lowette

Drinking a river of IoT data with Akka.NET

A ge n d a

• A bit of history

• Introduction to Akka.NET

• The problem domain

• How Akka.NET fits in

• Implementation details

• Beyond this talk

History

Why we even have Akka.NET

O r i g i n o f t h e A c t o r m o d e l

Designing software inspired by physics:

• 1973

• Carl Hewitt, Peter Bishop & Richard Steiger

• Theoretical model

• Many independent microprocessors

• Further refinement in the 70’s and eraly 80’s

F i rs t p u t i n t o p ra c t i c e

Ericsson AXD 301 Telco System:

• Invention of Erlang

• Fault-Tolerant

• Distributed

• Concurrent

• 2 million lines of code

• 99,9999999% uptime (9 nines)

~ 31ms downtime per year

2 0 1 5 – Ye a r o f t h e . N E T a c t o rs

• Feb 2015: Project Orleans v 1.0.0

• April 2015: Akka.NET v 1.0.0

• April 2015: Service Fabric Reliable Actors v 1.0.x

Why 2015?

C l a s s i c s c a l i n g u n d e r s t re s s

• Explosion of the web

• Smartphones

• Internet of things

Pa ra l l e l i s m i s s a l va t i o n

Problems with parallelization:

• Shared State
• Race Conditions

• Blocking calls

• Deadlocks

• Serialized code

A m d a h l ’s L a w

P ro m i s e s

• High parallelization

• For stateful systems

• Reactive Patterns

• Fault tolerance (self healing)

How stuff works

Introduction to Akka.NET

T h e A c t o r

Simple object

• Holds its own state (no shared state)

• Inbox:
• Messages (the only input)

• Processed in order

• 1 message at a time

→ Guaranteed single threaded

T h e s i m p l e s t a c t o r

M e s s a ge s

Simple objects

• Immutable!
• Akka.NET does not enforce this

• DO NOT try to exploit this

• Might cross machine boundaries

Throughput:

• Claimed: 50 M/s on a single machine

• Well over 1 M/s on my laptop

A n i m m u t a b l e m e s s a ge

T h e A c t o r S y s t e m

Manages:

• Actor life cycles

• Messaging

• Inboxes

• Thread scheduling

• The system event bus

• …

C re a t i n g a n A c t o r S y s t e m

A c t o r h i e ra rc hy

• Actors can have children

• Position = address

• 3 default actors:
• /

• /user

• /system

S u p e r v i s i o n

• Errors are escalated to the parent

• Parent decides OR escalates further

• Action:
• Resume

• Stop

• Restart

• Strategy:
• OneForOne: only the failing actor

• OneForAll: all children

D e ve l o p m e n t i d e a s

• Split workloads into small chunks

• Make separate actors for every task

• Push risk to the edges,
handle faults there

• Avoid ‘bottleneck actors’

D e s i g n Pa tt e r n s

• Fan-out Pattern

• Parent Proxy Pattern

• Consensus Pattern

• Character Actor

• …

T h e c h a ra c t e r a c t o r

What are we trying to solve?

The problem domain

C o n n e c t i o n s i t u a t i o n

W h a t d o w e w a n t ?

Storage of historic usage

• Storage of (normalized) values

• Plotting of consumption graphs

• Comparison of time periods

Alerting

• Momentary consumption threshold

• Periodic consumption threshold

Re a d i n g v s C o n s u m p t i o n

M o m e n t a r y t h re s h o l d a l e r t

M o m e n t a r y t h re s h o l d a l e r t

What part of the solution can Akka.NET provide?

How Akka.NET fits in

Yo u r t y p i c a l I o T s t a c k

B a c ke n d

D o n ’ t b e a m a g p i e !

Good fits:

• Gaming backends

• Trading systems

• Internet of Things

• Parallelizable calculations

• … any stateful high throughput application

It doesn’t have to be the whole solution!

Enough chit-chat, let’s dive into the technical bits!

Implementation details

W h a t ’s o n t h e m e n u ?

1. Normalizing measurements

2. Getting messages to the ActorSystem

3. Persisting Data

4. Restart behavior

Making sure actors get consistent data

Normalizing Measurements

W hy n o r m a l i za t i o n ?

Writing logic is easier with consistent values:

• Exact timestamps

• No gaps

• Incorrect values filtered

• …

Deal with it in one place

T i m e st a m p c o r re c t i o n & b u c ke t s

G a p f i l l i n g

• Do we want to fill this gap?

• If so, how?

• Do other Actors need to know?
If yes, add a flag to the message

There is no ‘right’ answer

Po s s i b l e s o l u t i o n s

Not filled Peak at start

Peak at end Peak in center

Evenly split

Trend line

A c t o rs

Akka.NET Remoting
Proxy Actors

Getting messages to the ActorSystem

A k ka . Re m o t e

ActorSystems can talk to other ActorSystems

• Remote addressing

• Remote deployment

• Remote messaging

• Location Transparency

• Multiple transports

D e v i c e A c t o r P rox y

D e v i c e A c t o r P rox y … c o n t i n u e d

D e v i c e s A c t o r

Saving what cannot be lost

Persisting Data

A k ka . Pe rs i s t e n c e

Actors that recover their state when (re-)created:

• Inherit from PersistentActor

• Give it a unique PersistenceId

• Persist Events with the Persist(…) command

• Persist snapshots with the SaveSnapshot(…) command

• Register Recover<T>(…) handlers to restore state

A c t o rs

How to get going again after a restart

Restart behavior

A f t e r a sy s t e m re s t a r t

Recreating Actors:

• Query the DB on startup

• Create the required Actors

How to get Actor state back:

• Minimize the number of actors that need to recover state

• 1 PersistedActor per device = ideal

• Other actors query that actor for the state they need

A c t o rs

The stuff that we didn’t talk about …

Beyond this talk

M a k i n g A k ka . N E T p ro d u c t i o n re a d y

• Configuration:
HOCON

• Clustering:
Run across multiple machines

• Logging:
Adapters for Nlog, SeriLog, etc.

• Dependency Injection:
Akka.NET supports DI for your actors
(anti-pattern!)

• Production monitoring:
Phobos

S t a r t l e a r n i n g

1. FREE Akka.NET Bootcamp by Petabridge:
https://github.com/petabridge/akka-bootcamp

2. PluralSight courses:
There are some good courses available!

3. Petabridge blog:
https://petabridge.com/blog/

4. Petabridge remote training (paid):
Worth it when you have serious questions

D e p l o y m e n t

1. Pause the process that reads from the event stream

2. Wait for processing to end

3. Deploy the Akka.NET cluster

4. Re-create actors (triggering Persistence restores)

5. Resume sending from the event stream

→When done right, you can do this without losing data!

→ AUTOMATE THIS!

C o n c l u s i o n

1. Check if your problem domain is a fit for Actors

2. Decide which part of the solution will be Akka.NET

3. Design your actor hierarchies appropriately

4. Normalizing data helps a lot

5. Think about deployment & recycles

A b o u t m e

Hannes Lowette

Head of Learning & Development
@Axxes_IT

• @hannes_lowette

• #20086521

Code samples and slides at

github.com/Belenar/Axxes.AkkaDotNet.SensorData

