

#GOTOcph

BEST PRACTICES FOR REAL-TIME INTELLIGENT VIDEO ANALYTICS DR. EKATERINA SIRAZITDINOVA, NOVEMBER 2021

WHY INTELLIGENT VIDEO ANALYTICS?

WHY INTELLIGENT VIDEO ANALYTICS? Every industry is going through rapid innovation to bring intelligent insights

PUBLIC SPACES

HEALTHCARE & HOSPITALS

TRANSPORTATION HUBS

CHALLENGES WITH INTELLIGENT VIDEO ANALYTICS

THROUGHPUT Achieving real-time, low latency results

-

TIPS AND TRICKS FOR EFFICIENT AI VIDEO ANALYTICS

FEATURE TRANSFER

TRANSFER LEARNING Transferring learned features from one model to another

Less data required to train accurately

KEY BENEFITS

Reduce training time and cost

DATA AUGMENTATION Extending the dataset by applying simple transformations

SPATIAL

COLOR

Color shift

Hue rotation

Saturation

Contrast adjustment

🧼 NVIDIA.

Reduce memory requirements

- Speed-up memory intensive operations by using half the bytes
- Speed-up math intensive operations by using Tensor Cores
- Train with half-precision while maintaining network accuracy as with single precision in order to:

AUTOMATIC MIXED PRECISION (AMP)

Train larger models or larger batches

Post Training Quantization (PTQ) for quantization after training is done

Quantization Aware Training (QAT) for modelling quantization error from weights and tensors during training

Quantize(x, r) = round(s * clip(x, -r, r)) where r = |Max| and s = 127 / r

QUANTIZATION Reducing bits per weight

PeopleNet ResNet34

PeopleNet ResNet18

0

2x throughput Increase

2-step process

- Reduce model size
- 2 Incrementally retrain model after pruning to recover accuracy

6 inputs, 6 neurons, 32 connections

NETWORK PRUNING Reducing the number of weights

6 inputs, 5 neurons, 24 connections

Network - ResNet18 4-class

Before layer fusion

NETWORK GRAPH OPTIMIZATIONS Layer & tensor fusion

After horizontal and vertical layer fusion

- Target hardware platform
- Batch size
- Input dimensions
- Filter dimensions
- Tensor layout
- Specific algorithms implementation
- 100s of specialized kernels otimized for every GPU platform

TX2

Xavier NX

KERNEL AUTO-TUNING Picking right algorithms depending on your deployment hardware

Xavier AGX

x86 GPUs

DYNAMIC TENSOR MEMORY UPON INFERENCE Reduced network memory footprint & improved memory re-use

- Combining tensors into regions
 - Region lifetime is a section of network execution time
- Assigning regions to blocks
 - Regions assigned to a block have disjoint lifetimes

Similar to *register allocation in* compiling, the process of assigning a large number of target program variables onto a small number of registers

Region 3

Tensor E

MULTISTREAM CONCURENT EXECUTION For better GPU utilization and higher throughput

Serial

Concurrent

H2D

Memory copy (D2H)

Performance improvement

Execution time

FREE NVIDIA PRODUCTS DESIGNED TO MAKE YOUR AI APPLICATIONS EFFICIENT

platform company."

Jensen Huang, CEO of NVIDIA

"NVIDIA is not a GPU company. It's a

PRE-TRAINED MODEL LIBRARY

VEHICLE DETECTION

NLP + ASR

000

POSE ESTIMATION

LICENSE PLATES

FACE DETECT

NVIDIA GPU Cloud

NVIDIA'S END-TO-END AI WORKFLOW Develop & deploy production ready solutions

TAO TOOLKIT

DEVELOPMENT AND DEPLOYMENT

Turnkey apps

Development environment

DEEPSTREAM SDK

Jetson appliances

1	\prec	
	•	
	-!	

EGX servers

TAO TOOLKIT

CONVERSATIONAL AI

Prune	
Те	nsorRT
NCE PLATFO	RMS
	F 2 2-1
	Ampore
4	Ampere

T4

HIGH PERFORMANCE PRE-TRAINED VISION AI MODELS Download for free from https://ngc.nvidia.com/

- Optimized for high throughput
- Trained for >80% accuracy
- **Production-ready**
- Adaptable with NVIDIA TAO

People detection

Gaze estimation

Heart rate estimation

Emotion recognition

Vehicle & pedestrian detection

License plate detection

License plate recognition

Facial landmark

People segmentation

Gesture recognition

Pose estimation

Face detect IR

Dash camera vehicle detection

Vehicle make net

Vehicle type net

ENABLING BEYOND PRE-TRAINED AI MODELS 100+ combinations of model architectures and backbones

	Image Classification	Object Detection						Segmentation		
		DetectNet_V2	FasterRCNN	SSD	YOLOV3	YOLOV4	RetinaNet	DSSD	MaskRCNN	UNET
ResNet10/18 /34/50/101	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
VGG16/19	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
GoogLeNet	\checkmark			\checkmark	\checkmark	\checkmark				
MobileNet V1/V2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
SqueezeNet	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
DarkNet 19/53	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
CSPDarkNet 19/53	\checkmark					\checkmark				
Efficient Net B0/B1	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark		

Pre-trained weights trained on OpenImage dataset

ACHIEVING STATE OF THE ART ACCURACY FOR PUBLIC DATASETS

NVIDIA TENSORRT TensorRT Optimizer & TensorRT Runtime

Layer and Tensor Fusion

Weight and Activation **Precision Calbration**

Kernel Auto-Tuning

Dynamic Tensor Memory

Multi-Stream Execution

Step 1: Optimize trained model

Trained Neural Network

Step 2: Deploy optimized plans with runtime

Optimized Plans

TENSORRT WORKFLOW Optimize and deploy

TensorRT Optimizer

Optimized Plans

TRITON INFERENCE SERVER Open-source software for scalable, simplified inference serving

DEEPSTREAM SDK

DEEPSTREAM APPLICATION ARCHITECTURE End-to-end hardware accelerated pipeline

PIPELINE EFFICIENCY WITH ZERO MEMORY COPIES

MEMORY)

NVIDIA GRAPH COMPOSER Drag + drop development environment

150 building blocks

Extensions: collection of components

DEEPSTREAM VIDEO DEMO PeopleNet: detecting people

https://ngc.nvidia.com/catalog/models/nvidia:tlt_peoplenet

DEEPSTREAM VIDEO DEMO DashCamNet and VehicleTypeNet in action

Car 2805 largevehicle Ci Car Car 295 (Car 2 Car 2303 sedan

https://ngc.nvidia.com/catalog/models/nvidia:tlt_dashcamnet https://ngc.nvidia.com/catalog/models/nvidia:tlt_vehiclemakenet

DEEPSTREAM VIDEO DEMO Hand detector adapted with TAO Toolkit and GestureNet is used out the box

https://github.com/NVIDIA-AI-IOT/gesture_recognition_tlt_deepstream

TRAIN

Transfer learning, AMP, multi GPU, data augmentation, pruning and quantization aware training with TAO Toolkit

SUMMARY For efficient Al video analytics

OPTIMIZE

Layer fusion, kernel auto-tuning, dynamic tensor memory, etc. with TensorRT

DEPLOY

Concurrent execution, zero copies, integrated encoders and decoders with Deepstream SDK

🧼 NVIDIA.

TAO Toolkit https://developer.nvidia.com/tao-toolkit DeepStream SDK https://developer.nvidia.com/deepstream-getting-started TensorRT https://developer.nvidia.com/tensorrt Triton Inference Server: https://github.com/triton-inference-server NVIDIA GPU Cloud (NGC) https://ngc.nvidia.com/ Developer forums https://forums.developer.nvidia.com/ NVIDIA Deep Learning Institute https://www.nvidia.com/en-us/training/

DEVELOPER RESOURCES Powerful end-to-end AI video analytics made easy

EARNING DEEP LEARNING

Theory and Practice of Neural Networks, Computer Vision, Natural Language Processing, and Transformers Using TensorFlow

MAGNUS EKMAN

THEORY AND PRACTICE OF NEURAL NETWORKS, COMPUTER VISION, NATURAL LANGUAGE PROCESSING, AND TRANSFORMERS USING TENSORFLOW

- Full-colour guide
- Illuminates both the core concepts and the hands-on programming techniques needed to succeed
- Shows how to build advanced architectures, including the Transformer
- Includes concise, well-annotated code examples using TensorFlow with Keras; corresponding PyTorch examples are provided online

Available at the GOTO Copenhagen Conference Bookstore

