
Clean Architecture
Jason Taylor

Join the Conversation #GOTOCph @JasonGtAu

Join the Conversation #GOTOCph @JasonGtAu

SSW Solution Architect

Jason Taylor

github.com/jasongt

youtube.com/jasongt

Join the Conversation #DotNetCoreSuperpowers @SSW_TV

jasongtau

codingflow.net

Visiting from Australia

.NET Developer Since 2002

Keep It Simple, Stupid!

Clean Architecture

Infrastructure Layer

Application Layer

Presentation Layer

Next Steps

Domain Layer

Agenda

Clean Architecture

Independent of frameworks

Testable

Independent of UI

Independent of database

Independent anything external

Join the Conversation #GOTOCph @JasonGtAu

Presentation

Infrastructure

Application

Domain

Northwind Traders Sample

Clean Architecture

ASP.NET Core 3.0

Entity Framework Core 3.0

ASP.NET Core Identity 3.0

Repo bit.ly/northwind-traders

Join the Conversation #GOTOCph @JasonGtAu

https://bit.ly/northwind-traders

Clean Architecture Template

.NET Core Template Package

ASP.NET Core 3.0

Entity Framework Core 3.0

ASP.NET Core Identity 3.0

Repo bit.ly/ca-sln

Join the Conversation #GOTOCph @JasonGtAu

https://bit.ly/ca-sln

Domain contains enterprise-wide logic and types

Application contains business-logic and types

Infrastructure contains all external concerns

Presentation and Infrastructure depend only on Application

Infrastructure and Presentation components can be replaced

with minimal effort

Join the Conversation #GOTOCph @JasonGtAu

Key Points

Clean Architecture

Infrastructure Layer

Application Layer

Presentation Layer

Next Steps

Domain Layer

Agenda

Overview

Entities

Value Objects

Enumerations

Logic

Exceptions

Join the Conversation #GOTOCph @JasonGtAu

Presentation

Application

Infrastructure

Domain

Demo

Reviewing the Domain layer

Join the Conversation #GOTOCph @JasonGtAu

Avoid using data annotations

Use value objects where appropriate

Create custom domain exceptions

Initialise all collections & use private setters

Automatically track changes

Join the Conversation #GOTOCph @JasonGtAu

Key Points

Clean Architecture

Infrastructure Layer

Application Layer

Presentation Layer

Next Steps

Domain Layer

Agenda

Overview

Interfaces

Models

Logic

Commands / Queries

Validators

Exceptions

Join the Conversation #GOTOCph @JasonGtAu

Presentation

Application

Infrastructure

Domain

CQRS

Command Query Responsibility Segregation

Separate reads (queries) from writes (commands)

Can maximise performance, scalability, and simplicity

Easy to add new features, just add a new query or command

Easy to maintain, changes only affect one command or query

Join the Conversation #GOTOCph @JasonGtAu

CQRS + MediatR = ♥

Define commands and queries as requests

Application layer is just a series of request / response

objects

Ability to attach additional behaviour before and / or

after each request, e.g. logging, validation, caching,

authorisation and so on

Join the Conversation #GOTOCph @JasonGtAu

Demo

Reviewing the Application layer

Join the Conversation #GOTOCph @JasonGtAu

Using CQRS + MediatR simplifies your overall design

MediatR simplifies cross cutting concerns

Fluent Validation is useful for all validation scenarios

AutoMapper simplifies mapping and projections

Independent of infrastructure concerns

Join the Conversation #GOTOCph @JasonGtAu

Key Points

Clean Architecture

Infrastructure Layer

Application Layer

Presentation Layer

Next Steps

Domain Layer

Agenda

Overview

Persistence

Identity

File System

System Clock

API Clients

Join the Conversation #GOTOCph @JasonGtAu

Presentation

Application

Infrastructure

Domain

Unit of Work and Repository Patterns

Should we implement these patterns?

It isn’t always the best choice, because:

EF Core insulates your code from database changes

DbContext acts as a unit of work

DbSet acts as a repository

EF Core has features for unit testing without repositories

Join the Conversation #GOTOCph @JasonGtAu

What do the experts think?

Join the Conversation #GOTOCph @JasonGtAu

I’m over Repositories, and
definitely over abstracting your
data layer.

No, the repository/unit-of-work
pattern isn’t useful with EF
Core.

No, you don’t need a repository.
But there are many benefits
and you should consider it!

Demo

Reviewing the Infrastructure layer

Join the Conversation #GOTOCph @JasonGtAu

Independent of the database

Use Fluent API configuration over data annotations

Prefer conventions over configuration

Automatically apply all entity type configurations

No layers depend on Infrastructure layer, e.g.

Presentation layer

Join the Conversation #GOTOCph @JasonGtAu

Key Points

Clean Architecture

Infrastructure Layer

Application Layer

Presentation Layer

Next Steps

Domain Layer

Agenda

Overview

SPA – Angular, React, Vue

Web API

Razor Pages

MVC

Web Forms

Join the Conversation #GOTOCph @JasonGtAu

Presentation

Application

Infrastructure

Domain

Demo

Reviewing the Presentation layer

Join the Conversation #GOTOCph @JasonGtAu

Controllers should not contain any application logic

Create and consume well defined view models

Open API bridges the gap between the front end and

back end

NSwag automates generation of Open API

specification and clients

Join the Conversation #GOTOCph @JasonGtAu

Key Points

Clean Architecture

Infrastructure Layer

Application Layer

Presentation Layer

Next Steps

Domain Layer

Agenda

Using the Solution Template

Join the Conversation #GOTOCph @JasonGtAu

C:\Code\CaTodo>dotnet new -i Clean.Architecture.Solution.Template

C:\Code\CaTodo>dotnet new ca-sln

The template "Clean Architecture Solution" was created successfully.

C:\Code\CaTodo>

Join the Conversation #GOTOCph @JasonGtAu

Join the Conversation #GOTOCph @JasonGtAu

Thank you!

info@ssw.com.au

www.ssw.com.au

Sydney | Melbourne | Brisbane

@jasongtau

bit.ly/ca-sln

bit.ly/northwind-traders

mailto:info@ssw.com.au
https://bit.ly/ca-sln
https://bit.ly/northwind-traders

