Reactive Systems

21st Century Architecture for 21st Century Problems

Dave Farley http://www.davefarley.net @davefarley77

Continuous **Delivery Itd**

http://www.continuous-delivery.co.uk

Our World Is Changing Large Applications circa 2005:

- 10's of Servers
- Seconds of Response Time
- Hours of Offline Maintenance
- Gigabytes of Data

Large Applications Now:

- Millisecond Response Time
- 100% Uptime
- Petabytes of Data

Handheld Devices to 1000's of multi-core processors

Our World Is Changing

1 CPU cycle

0.3 ns **1 s**

1 CPU cycle Level 1 Cache Hit

0.3 ns **1** s

<u>3 s</u> 0.9 ns

1 CPU cycle Level 1 Cache Hit Level 2 Cache Hit

- 0.3 ns **1** s
- <u>3 s</u> 0.9 ns
- **9** s 2.8 ns

1 CPU cycle Level 1 Cache Hit Level 2 Cache Hit Level 3 Cache Hit

0.3 ns 1	
----------	--

- <u>3 s</u> 0.9 ns
- **9** s 2.8 ns
- **43** s 12.9 ns

1 CPU cycle Level 1 Cache Hit Level 2 Cache Hit Level 3 Cache Hit Main Memory Access

0.3 ns 1 s

- <u>3 s</u> 0.9 ns
- **9** s 2.8 ns
- 12.9 ns **43** s
- 120 ns 6 min

1 CPU cycle Level 1 Cache Hit Level 2 Cache Hit Level 3 Cache Hit Main Memory Access **Computer to Compter over 10m fibre**

0.3 ns	1 S
0.9 ns	3 s

2.8 ns **9** s

12.9 ns **43** s

6 min 120 ns

20.05 us

1 CPU cycle Level 1 Cache Hit Level 2 Cache Hit Level 3 Cache Hit Main Memory Access **Computer to Compter over 10m fibre**

0.3 ns	1 s
0.9 ns	<u>3 s</u>
2.8 ns	9 s
12.9 ns	43 s
120 ns	6 min
20.05 us	18 h

1 CPU cycle Level 1 Cache Hit Level 2 Cache Hit Level 3 Cache Hit Main Memory Access **Computer to Compter over 10m fibre** Solid-state disk I/O

0.3 ns	1 s
0.9 ns	<u>3 s</u>
2.8 ns	9 s
12.9 ns	43 s
120 ns	6 min
20.05 us	18 h
100 us	

1 CPU cycle Level 1 Cache Hit Level 2 Cache Hit Level 3 Cache Hit Main Memory Access **Computer to Compter over 10m fibre** Solid-state disk I/O

1	0.3 ns
3 s	0.9 ns
9 s	2.8 ns
43 s	12.9 ns
6 min	120 ns
18 h	20.05 us
4 days	100 us

1 CPU cycle Level 1 Cache Hit Level 2 Cache Hit Level 3 Cache Hit Main Memory Access **Computer to Compter over 10m fibre** Solid-state disk I/O Spinning Rust I/O

1 S	0.3 ns
<mark>3</mark>	0.9 ns
<mark>9</mark>	2.8 ns
43 s	12.9 ns
6 min	120 ns
18 h	20.05 us
4 days	100 us
	5 ms

1 CPU cycle Level 1 Cache Hit Level 2 Cache Hit Level 3 Cache Hit Main Memory Access **Computer to Compter over 10m fibre** Solid-state disk I/O Spinning Rust I/O

1 s	0.3 ns
<u>3 s</u>	0.9 ns
9 s	2.8 ns
43 s	12.9 ns
6 min	120 ns
18 h	20.05 us
4 days	100 us
6 months	5 ms

1 CPU cycle Level 1 Cache Hit Level 2 Cache Hit Level 3 Cache Hit Main Memory Access **Computer to Compter over 10m fibre** Solid-state disk I/O Spinning Rust I/O **Internet London to Australia**

	0.3 ns	1
--	--------	----------

- <u>3 s</u> 0.9 ns
- 2.8 ns **9 s**
- 12.9 ns **43** s
- 120 ns 6 min
- 20.05 us
- - 100 us
 - 5 ms 180 ms

- 18 h
- 4 days
- 6 months

1 CPU cycle Level 1 Cache Hit Level 2 Cache Hit Level 3 Cache Hit Main Memory Access **Computer to Compter over 10m fibre** Solid-state disk I/O Spinning Rust I/O **Internet London to Australia**

|--|

- <u>3 s</u> 0.9 ns
- 2.8 ns **9 s**
- 12.9 ns **43** s
- 120 ns 6 min
- 20.05 us

- 100 us
- 5 ms
- 180 ms
- 4 days 6 months

18 h

19 years

1 CPU cycle Level 1 Cache Hit Level 2 Cache Hit Level 3 Cache Hit Main Memory Access **Computer to Compter over 10m fibre** Solid-state disk I/O Spinning Rust I/O **Internet London to Australia Computer Reboot**

|--|

- <u>3 s</u> 0.9 ns
- 2.8 ns **9 s**
- 12.9 ns **43** s
- 120 ns 6 min
- 20.05 us
- 100 us
- 5 ms 180 ms 5 min
- 4 days 6 months 19 years

18 h

1 CPU cycle Level 1 Cache Hit Level 2 Cache Hit Level 3 Cache Hit Main Memory Access **Computer to Compter over 10m fibre** Solid-state disk I/O Spinning Rust I/O **Internet London to Australia Computer Reboot**

0.3 ns	1	S

- <u>3 s</u> 0.9 ns
- 2.8 ns **9 s**
- 12.9 ns **43** s
- 120 ns *6 min*
- 20.05 us

5 ms

180 ms

5 min

- 100 us
 - 4 days
 - 6 months

18 h

- 19 years
- 31,000 years

The Reactive Manifesto "21st Century Problems are not best solved with 20th Century Software Architectures"

Source: www.reactivemanifesto.org

The Evolution of modern hardware has changed many of the common assumptions of software development

Responsive:

- Responds in a Timely Manner
- Cornerstone of Usability
- Also Quick to Detect Problems

"Since we can't afford faster computers, we're going to hire slower workers because that will make our computers seem faster."

Resilient:

- Resilience Depends on Replication,

• Remains Responsive in the Face of Failure Containment, Isolation and Delegation

Elastic:

- Remains Responsive Under Varying Workload
- Responds to Change in the Input Rate By Increasing or Decreasing Resources that Service the Input
- Decentralised Architecture, No Contention Points, No Central Bottlenecks

Message Driven:

- Asynchronous Message Passing is the foundation for all of these properties
- Loose-Coupling, Isolation, Location Transparency
- Ability to Delegate Errors

Properties of Reactive Systems

- Flexible
- Loosely-Coupled
- Scalable
- Easier to Develop
- More Tolerant of Failure
- Respond to Failure Gracefully
- Responsive to Users

Fractal Architecture

- Large Systems Are Composed of Smaller Ones They Depend on the Reactive Properties of Their
- Constituents
- These Benefits Operate At All Scales
- Such Systems are Composable

Fractal Architecture

An Example

An Example

An Example

Order("Continuous Delivery")

Order("Continuous Delivery")

Reserve("Continuous Delivery")

Ordered("Continuous Delivery")

Order("Continuous Delivery")

- Extremely useful pattern
- Very simple...
 - Use Domain-level message semantics
 - Migrate state of domain model based on message input
 - Generate events on state change
 - Run business logic on a single thread

BookStore

Services As State Machines

Inventory

Inventory

Inventory

Change State of 'CD Book' to Ordering

Inventory

Change State of 'CD Book' to Ordering

Change State of 'CD Book' to Ordering

Change State of 'CD Book' to Ordering

Change State of 'CD Book' to Ordering

Change State of 'CD Book' to Ordering

Change State of 'CD Book' to Ordering

Inventory

Change State of 'CD Book' to Ordering

Inventory

Change State of 'CD Book' to Ordering

Importance of Idempotence

- This Model works really well!
- But, we need be confident in our messaging...
 - Order
 - Deterministic State
 - Durability •

An Example of Idempotence

- Decoupling in Time and Space
 - Time Sender and Receiver have independent lifecycle
 - Space Location Transparency
- Share Nothing!
- Well Defined Protocols

Built on Inter-Component Communication over

19-BESCAT

Component 'B'

Share Nothing

Share Nothing

Simple Domain Model

Cluster Based Persistence

Cluster Based Persistence

Cluster Based Persistence

- You Can't Isolate Stress
- The System as a Whole Needs to Respond Sensibly
- Unacceptable For a Stressed Component to Fail Catastrophically or Loose Messages
- Queues Represent An Unstable State Load
- Components Under Stress Need to Reflect This By Applying Back-Pressure, Slowing Upstream Inputs

Queues are always full or always empty. Anything else is transitional, on its way to full or empty.

Queues are always full or always empty. Anything else is transitional, on its way to full or empty.

Queues are always full or always empty. Anything else is transitional, on its way to full or empty.

Slightly Slower

Component 'B'

Slightly Faster

Queues are always full or always empty. Anything else is transitional, on its way to full or empty.

Queues are always full or always empty. Anything else is transitional, on its way to full or empty.

omponent 'B'

Queues are always full or always empty. Anything else is transitional, on its way to full or empty.

omponent 'B'

Queues are always full or always empty. Anything else is transitional, on its way to full or empty.

Slightly Faster

omponent 'B'

Never Use Unbounded Queues!

"I know let's allow our queues to grow"

Component 'B'

Never Use Unbounded Queues!

"I know let's allow our queues to grow"

Component 'B'

Never Use Unbounded Queues!

Slightly Faster

Component 'B'

Slightly Faster

Location Transparency

- Elastic Systems Need To React To Changes In Demand
- We Are All Doing Distributed Computing
- Embracing This Means There Is No Difference Between Horizontal (Cluster) and Vertical (Multicore) Scalability
- Components Should Be Mobile
- One Pattern For Communications
 - Local Communications Is An Optimisation •

ALCORADO A ROGAL DE PO

ALCORADO A ROGAL DE PO

Size Para Para San Das Cala Lin

Component 'A'

A CONSCIENCE

the distigning Rog State Deco

Component 'B'

Example Reactive, MicroService architecture

Where to start?

Aeron

Something to keep an eye on: Statefull Serverless

http://www.continuous-delivery.co.uk

Dave Farley http://www.davefarley.net @davefarley77

