
Dave Farley
http://www.davefarley.net
@davefarley77

http://www.continuous-delivery.co.uk

Reactive Systems

21st Century Architecture for 21st Century Problems

http://www.davefarley.net

Our World Is Changing
Large Applications circa 2005:

• 10’s of Servers
• Seconds of Response Time
• Hours of Offline Maintenance
• Gigabytes of Data 

Large Applications Now:
• Handheld Devices to 1000’s of multi-core processors
• Millisecond Response Time
• 100% Uptime
• Petabytes of Data

Our World Is Changing

Mechanical Sympathy

What if

1 CPU cycle

took 1 second?

Mechanical Sympathy
1 CPU cycle 0.3 ns 1 s

Mechanical Sympathy
1 CPU cycle 0.3 ns 1 s

Level 1 Cache Hit 0.9 ns 3 s

Mechanical Sympathy
1 CPU cycle 0.3 ns 1 s

Level 1 Cache Hit 0.9 ns 3 s

Level 2 Cache Hit 2.8 ns 9 s

Mechanical Sympathy
1 CPU cycle 0.3 ns 1 s

Level 1 Cache Hit 0.9 ns 3 s

Level 2 Cache Hit 2.8 ns 9 s

Level 3 Cache Hit 12.9 ns 43 s

Mechanical Sympathy
1 CPU cycle 0.3 ns 1 s

Level 1 Cache Hit 0.9 ns 3 s

Level 2 Cache Hit 2.8 ns 9 s

Level 3 Cache Hit 12.9 ns 43 s

Main Memory Access 120 ns 6 min

Mechanical Sympathy
1 CPU cycle 0.3 ns 1 s

Level 1 Cache Hit 0.9 ns 3 s

Level 2 Cache Hit 2.8 ns 9 s

Level 3 Cache Hit 12.9 ns 43 s

Main Memory Access 120 ns 6 min

Computer to Compter over 10m fibre 20.05 us

Mechanical Sympathy
1 CPU cycle 0.3 ns 1 s

Level 1 Cache Hit 0.9 ns 3 s

Level 2 Cache Hit 2.8 ns 9 s

Level 3 Cache Hit 12.9 ns 43 s

Main Memory Access 120 ns 6 min

Computer to Compter over 10m fibre 20.05 us 18 h

Mechanical Sympathy
1 CPU cycle 0.3 ns 1 s

Level 1 Cache Hit 0.9 ns 3 s

Level 2 Cache Hit 2.8 ns 9 s

Level 3 Cache Hit 12.9 ns 43 s

Main Memory Access 120 ns 6 min

Computer to Compter over 10m fibre 20.05 us 18 h

Solid-state disk I/O 100 us

Mechanical Sympathy
1 CPU cycle 0.3 ns 1 s

Level 1 Cache Hit 0.9 ns 3 s

Level 2 Cache Hit 2.8 ns 9 s

Level 3 Cache Hit 12.9 ns 43 s

Main Memory Access 120 ns 6 min

Computer to Compter over 10m fibre 20.05 us 18 h

Solid-state disk I/O 100 us 4 days

Mechanical Sympathy
1 CPU cycle 0.3 ns 1 s

Level 1 Cache Hit 0.9 ns 3 s

Level 2 Cache Hit 2.8 ns 9 s

Level 3 Cache Hit 12.9 ns 43 s

Main Memory Access 120 ns 6 min

Computer to Compter over 10m fibre 20.05 us 18 h

Solid-state disk I/O 100 us 4 days

Spinning Rust I/O 5 ms

Mechanical Sympathy
1 CPU cycle 0.3 ns 1 s

Level 1 Cache Hit 0.9 ns 3 s

Level 2 Cache Hit 2.8 ns 9 s

Level 3 Cache Hit 12.9 ns 43 s

Main Memory Access 120 ns 6 min

Computer to Compter over 10m fibre 20.05 us 18 h

Solid-state disk I/O 100 us 4 days

Spinning Rust I/O 5 ms 6 months

Mechanical Sympathy
1 CPU cycle 0.3 ns 1 s

Level 1 Cache Hit 0.9 ns 3 s

Level 2 Cache Hit 2.8 ns 9 s

Level 3 Cache Hit 12.9 ns 43 s

Main Memory Access 120 ns 6 min

Computer to Compter over 10m fibre 20.05 us 18 h

Solid-state disk I/O 100 us 4 days

Spinning Rust I/O 5 ms 6 months

Internet London to Australia 180 ms

Mechanical Sympathy
1 CPU cycle 0.3 ns 1 s

Level 1 Cache Hit 0.9 ns 3 s

Level 2 Cache Hit 2.8 ns 9 s

Level 3 Cache Hit 12.9 ns 43 s

Main Memory Access 120 ns 6 min

Computer to Compter over 10m fibre 20.05 us 18 h

Solid-state disk I/O 100 us 4 days

Spinning Rust I/O 5 ms 6 months

Internet London to Australia 180 ms 19 years

Mechanical Sympathy
1 CPU cycle 0.3 ns 1 s

Level 1 Cache Hit 0.9 ns 3 s

Level 2 Cache Hit 2.8 ns 9 s

Level 3 Cache Hit 12.9 ns 43 s

Main Memory Access 120 ns 6 min

Computer to Compter over 10m fibre 20.05 us 18 h

Solid-state disk I/O 100 us 4 days

Spinning Rust I/O 5 ms 6 months

Internet London to Australia 180 ms 19 years

Computer Reboot 5 min

Mechanical Sympathy
1 CPU cycle 0.3 ns 1 s

Level 1 Cache Hit 0.9 ns 3 s

Level 2 Cache Hit 2.8 ns 9 s

Level 3 Cache Hit 12.9 ns 43 s

Main Memory Access 120 ns 6 min

Computer to Compter over 10m fibre 20.05 us 18 h

Solid-state disk I/O 100 us 4 days

Spinning Rust I/O 5 ms 6 months

Internet London to Australia 180 ms 19 years

Computer Reboot 5 min 31,000 years

The Reactive Manifesto

Responsive

Elastic Resilient

Message Driven

“21st Century Problems are not best solved with
20th Century Software Architectures”

The Evolution of modern hardware has changed many of
the common assumptions of software development

Source: www.reactivemanifesto.org

http://www.reactivemanifesto.org

Reactive Systems Are:

Responsive:
• Responds in a Timely Manner
• Cornerstone of Usability
• Also Quick to Detect Problems

Reactive Systems Are:

Resilient:
• Remains Responsive in the Face of Failure
• Resilience Depends on - Replication,

Containment, Isolation and Delegation

Reactive Systems Are:
Elastic:

• Remains Responsive Under
Varying Workload

• Responds to Change in the
Input Rate By Increasing or
Decreasing Resources that
Service the Input

• Decentralised Architecture,
No Contention Points, No
Central Bottlenecks

Reactive Systems Are:

Message Driven:
• Asynchronous Message Passing is the foundation

for all of these properties
• Loose-Coupling, Isolation, Location Transparency
• Ability to Delegate Errors

Properties of Reactive Systems

• Flexible

• Loosely-Coupled

• Scalable

• Easier to Develop

• More Tolerant of Failure

• Respond to Failure Gracefully

• Responsive to Users

Fractal Architecture

• Large Systems Are Composed of Smaller Ones

• They Depend on the Reactive Properties of Their
Constituents

• These Benefits Operate At All Scales

• Such Systems are Composable

Fractal Architecture

• Large Systems Are Composed of Smaller Ones

• They Depend on the Reactive Properties of Their
Constituents

• These Benefits Operate At All Scales

• Such Systems are Composable

Failure Modes in Synchronous Messaging

Component ‘B’Component ‘A’

Failure Modes in Synchronous Messaging

Component ‘B’Component ‘A’

Failure Modes in Synchronous Messaging

Component ‘B’Component ‘A’

Failure Modes in Synchronous Messaging

Component ‘B’Component ‘A’

Failure Modes in Synchronous Messaging

Component ‘B’Component ‘A’

Failure Modes in Synchronous Messaging

Component ‘B’Component ‘A’

Failure Modes in Synchronous Messaging

Component ‘B’Component ‘A’

Failure Modes in Synchronous Messaging

Component ‘B’Component ‘A’

Failure Modes in Synchronous Messaging

Component ‘B’Component ‘A’

Synch Messaging Breeds Complexity

Component ‘B’Component ‘A’

Synch Messaging Breeds Complexity

Component ‘B’Component ‘A’

Synchronous Comms Increases Coupling in
Location and Time

Synch Messaging Breeds Complexity

Component ‘B’Component ‘A’

Synchronous Comms Increases Coupling in
Location and Time

Synch Messaging Breeds Complexity

Component ‘B’Component ‘A’

Synchronous Comms Increases Coupling in
Location and Time

Synch Messaging Breeds Complexity

Component ‘B’Component ‘A’

Synchronous Comms Increases Coupling in
Location and Time

Synch Messaging Breeds Complexity

Component ‘B’Component ‘A’

Synchronous Comms Increases Coupling in
Location and Time

Synch Messaging Breeds Complexity

Component ‘B’Component ‘A’

Synchronous Comms Increases Coupling in
Location and Time

Synch Messaging Breeds Complexity

Component ‘B’Component ‘A’

Synch Messaging Breeds Complexity

Component ‘B’Component ‘A’

Synch Messaging Breeds Complexity

Component ‘B’Component ‘A’

Synch Messaging Breeds Complexity

Component ‘B’Component ‘A’

?

The Benefits of Asynchrony

Component ‘A’

The Benefits of Asynchrony

Component ‘B’

Component ‘A’

The Benefits of Asynchrony

Component ‘B’

Component ‘A’

The Benefits of Asynchrony

Component ‘B’

Component ‘A’

The Benefits of Asynchrony

Component ‘B’

Component ‘A’

The Benefits of Asynchrony

Component ‘B’

Component ‘A’

The Benefits of Asynchrony

Component ‘B’

Component ‘A’

The Benefits of Asynchrony

Component ‘B’

Component ‘A’

The Benefits of Asynchrony

Component ‘B’

Component ‘A’

The Benefits of Asynchrony

Component ‘B’

Component ‘A’

The Benefits of Asynchrony

Component ‘B’

Component ‘A’

The Benefits of Asynchrony

Component ‘B’

Component ‘A’

The Benefits of Asynchrony

Component ‘B’

Component ‘A’

The Benefits of Asynchrony

Component ‘B’

Component ‘A’

The Benefits of Asynchrony

Component ‘B’

Single Threaded!
Single Threaded!

Component ‘A’

The Benefits of Asynchrony

Component ‘A’

The Benefits of Asynchrony

Component ‘A’

The Benefits of Asynchrony

Component ‘A’

The Benefits of Asynchrony

Component ‘A’

The Benefits of Asynchrony

Component ‘A’

The Benefits of Asynchrony

Component ‘A’

The Benefits of Asynchrony

An Example

Component ‘B’Component ‘A’

An Example

BookStore Inventory

An Example

BookStore Inventory
Order(“Continuous Delivery”)

An Example

BookStore Inventory
Order(“Continuous Delivery”) Reserve(“Continuous Delivery”)

An Example

BookStore Inventory
Order(“Continuous Delivery”) Reserve(“Continuous Delivery”)

An Example

BookStore Inventory
Order(“Continuous Delivery”) Reserve(“Continuous Delivery”)

An Example

BookStore Inventory

An Example

BookStore Inventory
Order(“Continuous Delivery”) Reserve(“Continuous Delivery”)

An Example

BookStore Inventory
Order(“Continuous Delivery”) Reserve(“Continuous Delivery”)

Ordered(“Continuous Delivery”) Ordered(“Continuous Delivery”)

An Example

BookStore Inventory

An Example

BookStore Inventory

re
se

rv
in

gOrder(“Continuous Delivery”) Reserve(“Continuous Delivery”)

An Example

BookStore Inventory

re
se

rv
in

g

An Example

BookStore Inventory

re
se

rv
in

g

re
se

rv
in

g

An Example

BookStore Inventory

or
de

re
d

re
se

rv
in

g

An Example

BookStore Inventory

or
de

re
d

or
de

re
d

Services as State Machines
• Extremely useful pattern

• Very simple…
• Use Domain-level message semantics

• Migrate state of domain model based on message input

• Generate events on state change

• Run business logic on a single thread

Services As State Machines
BookStore Inventory

Services As State Machines
BookStore Inventory

Order ‘CD Book’

Services As State Machines
BookStore Inventory

Order ‘CD Book’

Change State

of ‘CD Book’

to Ordering

Services As State Machines
BookStore Inventory

Order ‘CD Book’

Reserve ‘CD Book’

Change State

of ‘CD Book’

to Ordering

Services As State Machines
BookStore Inventory

Order ‘CD Book’

Reserve ‘CD Book’

Change State

of ‘CD Book’

to Ordering

Change State

of ‘CD Book’

to Reserved

Services As State Machines
BookStore Inventory

Order ‘CD Book’

Reserve ‘CD Book’

Change State

of ‘CD Book’

to Ordering

‘CD Book’ Reserved

Change State

of ‘CD Book’

to Reserved

Services As State Machines
BookStore Inventory

Order ‘CD Book’

Reserve ‘CD Book’

Change State

of ‘CD Book’

to Ordering

‘CD Book’ Reserved

Change State

of ‘CD Book’

to Ordered

Change State

of ‘CD Book’

to Reserved

Services As State Machines
BookStore Inventory

Order ‘CD Book’

Reserve ‘CD Book’

Change State

of ‘CD Book’

to Ordering

‘CD Book’ Reserved

Change State

of ‘CD Book’

to OrderedOrdered ‘CD Book’

Change State

of ‘CD Book’

to Reserved

Services As State Machines
BookStore Inventory

Order ‘CD Book’

Reserve ‘CD Book’

Change State

of ‘CD Book’

to Ordering

‘CD Book’ Reserved

Change State

of ‘CD Book’

to OrderedOrdered ‘CD Book’

Change State

of ‘CD Book’

to Reserved

Services As State Machines
BookStore

Order ‘CD Book’

Reserve ‘CD Book’

Change State

of ‘CD Book’

to Ordering

‘CD Book’ Reserved

Change State

of ‘CD Book’

to OrderedOrdered ‘CD Book’

Change State

of ‘CD Book’

to Reserved

Services As State Machines
BookStore

Order ‘CD Book’

Reserve ‘CD Book’

Change State

of ‘CD Book’

to Ordering

Services As State Machines
BookStore

Order ‘CD Book’

Change State

of ‘CD Book’

to Ordering

Reserve ‘CD Book’

Services As State Machines
BookStore

Order ‘CD Book’

Change State

of ‘CD Book’

to Ordering

Reserve ‘CD Book’

List Books By

State Ordering

List of Books

in Ordering State

Sometim
e

Later…

Services As State Machines
BookStore

Order ‘CD Book’

Change State

of ‘CD Book’

to Ordering

Reserve ‘CD Book’

List Books By

State Ordering

List of Books

in Ordering State

Do Some Admin

 or Something

Sometim
e

Later…

Services As State Machines
BookStore

Order ‘CD Book’

Change State

of ‘CD Book’

to Ordering

Reserve ‘CD Book’

Services As State Machines
BookStore Inventory

Order ‘CD Book’

Change State

of ‘CD Book’

to Ordering

Reserve ‘CD Book’

Services As State Machines
BookStore Inventory

Order ‘CD Book’

Change State

of ‘CD Book’

to Ordering

Reserve ‘CD Book’

Services As State Machines
BookStore Inventory

Order ‘CD Book’

Change State

of ‘CD Book’

to Ordering

Change State

of ‘CD Book’

to Reserved

Reserve ‘CD Book’

Services As State Machines
BookStore Inventory

Order ‘CD Book’

Change State

of ‘CD Book’

to Ordering

‘CD Book’ Reserved

Change State

of ‘CD Book’

to Reserved

Reserve ‘CD Book’

Services As State Machines
BookStore Inventory

Order ‘CD Book’

Change State

of ‘CD Book’

to Ordering

‘CD Book’ Reserved

Change State

of ‘CD Book’

to Ordered

Change State

of ‘CD Book’

to Reserved

Reserve ‘CD Book’

Services As State Machines
BookStore Inventory

Order ‘CD Book’

Change State

of ‘CD Book’

to Ordering

‘CD Book’ Reserved

Change State

of ‘CD Book’

to OrderedOrdered ‘CD Book’

Change State

of ‘CD Book’

to Reserved

Reserve ‘CD Book’

Importance of Idempotence

• This Model works really well!

• But, we need be confident in our messaging…
• Order

• Deterministic State

• Durability

5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8

4334

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8

5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8

4334

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8

5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8

4334

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8

4334

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2

5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

4334

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2

5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2

4334

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2

5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2

4334

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2
3

5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2

4334

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2
3

4

5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2

43

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2
3

4

5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2

343

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2
3

4

5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2

343

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2
3

45

5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2
3

4

3

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2
3

45

5

Isolation

• Decoupling in Time and Space
• Time - Sender and Receiver have independent lifecycle

• Space - Location Transparency

• Share Nothing!

• Built on Inter-Component Communication over
Well Defined Protocols

Isolation

Component ‘A’ Component ‘B’

Isolation

Component ‘A’ Component ‘B’

Isolation

Component ‘A’ Component ‘B’

Isolation

Component ‘A’ Component ‘B’

Isolation

Component ‘A’ Component ‘B’

Isolation

Component ‘A’ Component ‘B’

Isolation

Component ‘A’ Component ‘B’

Share Nothing

Component ‘A’ Component ‘B’

Share Nothing

Component ‘A’ Component ‘B’

Simple Programming Model

Component ‘A’

Simple Programming Model

Component ‘A’

Simple Programming Model

Component ‘A’

Simple Programming Model

Component ‘A’

Component ‘A’

Simple Programming Model

Component ‘A’

Simple Programming Model

Component ‘A’

Simple Programming Model

Component ‘A’

Simple Programming Model

Component ‘A’

Simple Programming Model

Component ‘A’

Simple Domain Model Simple Programming Model

Message Based Persistence

Component ‘A’

Message Based Persistence

Component ‘A’

Message Based Persistence

Component ‘A’

Message Based Persistence

Component ‘A’

Message Based Persistence

Component ‘A’

Message Based Persistence

Message Based Persistence

Message Based Persistence

Component ‘A’

Message Based Persistence

Component ‘A’

Cluster Based Persistence

Component ‘A’

Cluster Based Persistence

Component ‘A’
Component ‘A’

Cluster Based Persistence

Component ‘A’
Component ‘A’

Back-Pressure

• You Can’t Isolate Stress

• The System as a Whole Needs to Respond Sensibly

• Unacceptable For a Stressed Component to Fail
Catastrophically or Loose Messages

• Queues Represent An Unstable State - Load

• Components Under Stress Need to Reflect This By Applying
Back-Pressure, Slowing Upstream Inputs

Queues Represent an Unstable State
Queues are always full or always empty.
Anything else is transitional, on its way to full or empty.

Queues Represent an Unstable State

Component ‘B’Component ‘A’

Queues are always full or always empty.
Anything else is transitional, on its way to full or empty.

Queues Represent an Unstable State

Component ‘B’Component ‘A’

Queues are always full or always empty.
Anything else is transitional, on its way to full or empty.

Slightly FasterSlightly Slower

Always Empty!

Queues Represent an Unstable State
Queues are always full or always empty.
Anything else is transitional, on its way to full or empty.

Queues Represent an Unstable State
Queues are always full or always empty.
Anything else is transitional, on its way to full or empty.

Component ‘B’Component ‘A’

Slightly Faster Slightly Slower

Always Full!

Queues Represent an Unstable State
Queues are always full or always empty.
Anything else is transitional, on its way to full or empty.

Component ‘B’Component ‘A’

Slightly Faster Slightly Slower

Always Full!

 ?

Queues Represent an Unstable State
Queues are always full or always empty.
Anything else is transitional, on its way to full or empty.

Component ‘B’

Slightly Faster Slightly Slower

Always Full!

Never Use Unbounded Queues!
“I know let’s allow our queues to grow”

 Component ‘A’

Slightly Faster

Component ‘B’

Slightly Slower

Never Use Unbounded Queues!
“I know let’s allow our queues to grow”

Component ‘A’

Slightly Faster

Component ‘B’

Slightly Slower

Never Use Unbounded Queues!
“I know let’s allow our queues to grow”

Back-Pressure

Component ‘B’Component ‘A’

Slightly Faster Slightly Slower

Always Full!

Back-Pressure

Component ‘B’Component ‘A’

Slightly Faster Slightly Slower

Always Full!
 Back-Pressure!

Back-Pressure

Component ‘A’

Slightly Faster

Always Full!
 Back-Pressure!Component ‘n’Back-Pressure!

Location Transparency
• Elastic Systems Need To React To Changes In Demand

• We Are All Doing Distributed Computing

• Embracing This Means There Is No Difference Between
Horizontal (Cluster) and Vertical (Multicore) Scalability

• Components Should Be Mobile

• One Pattern For Communications
• Local Communications Is An Optimisation

Linear Scalability Through Sharding

Component ‘A’ Component ‘B’

Linear Scalability Through Sharding

Component ‘A’ Component ‘B’

Component ‘B2’

Component ‘B1’

Linear Scalability Through Sharding

Component ‘A’

Component ‘B2’

Component ‘B1’

Linear Scalability Through Sharding

Component ‘A’

So What does this all look like?

Component ‘A’

Component ‘B’

Component ‘C’

Component ‘D’
HTTP

So What does this all look like?

Component ‘A’

Component ‘B’

Component ‘C’

Component ‘D’
HTTP

So What does this all look like?

Component ‘A’

Component ‘B’

Component ‘C’

Component ‘D’
HTTP

So What does this all look like?

Component ‘A’

Component ‘B’

Component ‘C’

Component ‘D’
HTTP

So What does this all look like?

Component ‘A’

Component ‘B’

Component ‘C’

Component ‘D’
HTTP

So What does this all look like?

Component ‘A’

Component ‘B’

Component ‘C’

Component ‘D’
HTTP

Example Reactive, MicroService architecture
Public API

Notification
Service

Market
Management
Application

Customer
Service

Application

TFX
Application Public

Web App

Contact
Service

Trade Report
Service

Account
Service

Customer
Service

Market
Management

Payment
Service

Market
Makers

FIX
Gateways

Instrument
Service

Notification
Service

Market Data
Consumers

Clearing
Gateways

Public Message Bus

Execution VenueExecution Venue
Execution Venue

(Markets & Matching)

Execution

Management Service
Execution

Management Service
Execution

Management Service

(Accounts & Positions)

Control Message Bus

Example Reactive, MicroService architecture
Public API

Notification
Service

Market
Management
Application

Customer
Service

Application

TFX
Application Public

Web App

Contact
Service

Trade Report
Service

Account
Service

Customer
Service

Market
Management

Payment
Service

Market
Makers

FIX
Gateways

Instrument
Service

Notification
Service

Market Data
Consumers

Clearing
Gateways

Public Message Bus

Execution VenueExecution Venue
Execution Venue

(Markets & Matching)

Execution

Management Service
Execution

Management Service
Execution

Management Service

(Accounts & Positions)Core Services

Control Message Bus

Example Reactive, MicroService architecture
Public API

Notification
Service

Market
Management
Application

Customer
Service

Application

TFX
Application Public

Web App

Contact
Service

Trade Report
Service

Account
Service

Customer
Service

Market
Management

Payment
Service

Market
Makers

FIX
Gateways

Instrument
Service

Notification
Service

Market Data
Consumers

Clearing
Gateways

Public Message Bus

Execution VenueExecution Venue
Execution Venue

(Markets & Matching)

Execution

Management Service
Execution

Management Service
Execution

Management Service

(Accounts & Positions)Core Services General Services

Control Message Bus

Example Reactive, MicroService architecture
Public API

Notification
Service

Market
Management
Application

Customer
Service

Application

TFX
Application Public

Web App

Contact
Service

Trade Report
Service

Account
Service

Customer
Service

Market
Management

Payment
Service

Market
Makers

FIX
Gateways

Instrument
Service

Notification
Service

Market Data
Consumers

Clearing
Gateways

Public Message Bus

Execution VenueExecution Venue
Execution Venue

(Markets & Matching)

Execution

Management Service
Execution

Management Service
Execution

Management Service

(Accounts & Positions)Core Services General Services

Gateway Services

Gateway Services

Control Message Bus

Example Reactive, MicroService architecture
Public API

Notification
Service

Market
Management
Application

Customer
Service

Application

TFX
Application Public

Web App

Contact
Service

Trade Report
Service

Account
Service

Customer
Service

Market
Management

Payment
Service

Market
Makers

FIX
Gateways

Instrument
Service

Notification
Service

Market Data
Consumers

Clearing
Gateways

Public Message Bus

Execution VenueExecution Venue
Execution Venue

(Markets & Matching)

Execution

Management Service
Execution

Management Service
Execution

Management Service

(Accounts & Positions)

Control Message Bus

Where to start?

Aeron Something to keep an eye on:

Statefull Serverless

Q&A

http://www.continuous-delivery.co.uk

Dave Farley
http://www.davefarley.net
@davefarley77

http://www.davefarley.net
http://www.davefarley.net

