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Our World Is Changing
Large Applications circa 2005:

• 10’s of Servers 
• Seconds of Response Time 
• Hours of Offline Maintenance 
• Gigabytes of Data 

Large Applications Now:
• Handheld Devices to 1000’s of multi-core processors 
• Millisecond Response Time 
• 100% Uptime 
• Petabytes of Data



Our World Is Changing



Mechanical Sympathy

What if  

1 CPU cycle  

took 1 second?
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Mechanical Sympathy
1 CPU cycle 0.3 ns 1 s

Level 1 Cache Hit 0.9 ns 3 s

Level 2 Cache Hit 2.8 ns 9 s

Level 3 Cache Hit 12.9 ns 43 s

Main Memory Access 120 ns 6 min

Computer to Compter over 10m fibre 20.05 us 18 h

Solid-state disk I/O 100 us 4 days

Spinning Rust I/O 5 ms 6 months

Internet London to Australia 180 ms 19 years

Computer Reboot 5 min 31,000 years



The Reactive Manifesto

Responsive

Elastic Resilient

Message Driven

“21st Century Problems are not best solved with 
20th Century Software Architectures”

The Evolution of modern hardware has changed many of 
the common assumptions of software development

Source: www.reactivemanifesto.org

http://www.reactivemanifesto.org


Reactive Systems Are:

Responsive:
• Responds in a Timely Manner 
• Cornerstone of Usability 
• Also Quick to Detect Problems



Reactive Systems Are:

Resilient:
• Remains Responsive in the Face of Failure 
• Resilience Depends on - Replication, 

Containment, Isolation and Delegation



Reactive Systems Are:
Elastic:

• Remains Responsive Under 
Varying Workload 

• Responds to Change in the 
Input Rate By Increasing or 
Decreasing Resources that 
Service the Input 

• Decentralised Architecture, 
No Contention Points, No 
Central Bottlenecks



Reactive Systems Are:

Message Driven:
• Asynchronous Message Passing is the foundation 

for all of these properties 
• Loose-Coupling, Isolation, Location Transparency 
• Ability to Delegate Errors



Properties of Reactive Systems

• Flexible 

• Loosely-Coupled 

• Scalable 

• Easier to Develop 

• More Tolerant of Failure 

• Respond to Failure Gracefully 

• Responsive to Users
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Synch Messaging Breeds Complexity
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?



The Benefits of Asynchrony



Component ‘A’

The Benefits of Asynchrony

Component ‘B’



Component ‘A’

The Benefits of Asynchrony

Component ‘B’



Component ‘A’

The Benefits of Asynchrony

Component ‘B’



Component ‘A’

The Benefits of Asynchrony

Component ‘B’



Component ‘A’

The Benefits of Asynchrony

Component ‘B’



Component ‘A’

The Benefits of Asynchrony

Component ‘B’



Component ‘A’

The Benefits of Asynchrony

Component ‘B’



Component ‘A’

The Benefits of Asynchrony

Component ‘B’



Component ‘A’

The Benefits of Asynchrony

Component ‘B’



Component ‘A’

The Benefits of Asynchrony

Component ‘B’



Component ‘A’

The Benefits of Asynchrony

Component ‘B’



Component ‘A’

The Benefits of Asynchrony

Component ‘B’



Component ‘A’

The Benefits of Asynchrony

Component ‘B’



Component ‘A’

The Benefits of Asynchrony

Component ‘B’

Single Threaded!
Single Threaded!
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Services as State Machines
• Extremely useful pattern 

• Very simple… 
• Use Domain-level message semantics  

• Migrate state of domain model based on message input  

• Generate events on state change 

• Run business logic on a single thread
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Importance of Idempotence

• This Model works really well! 

• But, we need be confident in our messaging… 
• Order 

• Deterministic State 

• Durability



5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8

4334

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8



5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8

4334

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8



5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8

4334

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1



5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8

4334

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2



5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

4334

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2



5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2

4334

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2



5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2

4334

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2
3



5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2

4334

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2
3

4



5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2

43

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2
3

4



5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2

343

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2
3

4



5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2

343

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2
3

45



5

An Example of Idempotence

Component ‘B’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2
3

4

3

Component ‘A’
1 2

3
45

6
7 81 2

3
45

6
7 8 1

2
3

45

5



Isolation

• Decoupling in Time and Space 
• Time - Sender and Receiver have independent lifecycle 

• Space - Location Transparency 

• Share Nothing! 

• Built on Inter-Component Communication over 
Well Defined Protocols
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Back-Pressure

• You Can’t Isolate Stress 

• The System as a Whole Needs to Respond Sensibly 

• Unacceptable For a Stressed Component to Fail 
Catastrophically or Loose Messages 

• Queues Represent An Unstable State - Load 

• Components Under Stress Need to Reflect This By Applying 
Back-Pressure, Slowing Upstream Inputs
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Component ‘A’

Slightly Faster

Always Full!
        Back-Pressure!Component ‘n’Back-Pressure!



Location Transparency
• Elastic Systems Need To React To Changes In Demand 

• We Are All Doing Distributed Computing 

• Embracing This Means There Is No Difference Between 
Horizontal (Cluster) and Vertical (Multicore) Scalability 

• Components Should Be Mobile 

• One Pattern For Communications 
• Local Communications Is An Optimisation
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Where to start?

Aeron Something to keep an eye on: 

Statefull Serverless
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