
Taking Machine Learning
Research to Production:

Solving Real Problems

Robert Crowe
Google

Imagine if you will ...

You’re an Online
Retailer Selling
Shoes ...

Your model predicts
click-through rates (CTR),
helping you decide how much
inventory to order

When suddenly

Your AUC and prediction accuracy
have dropped on men’s dress shoes!

What causes problems?

Kinds of problems

● Fast - Example: bad sensor, bad software update

● Slow - Example: drift

Sudden Problems
Problem with data
collection

○ Bad sensor/camera
○ Bad log data
○ Moved or disabled

sensors/cameras

Systems problem

○ Bad software update
○ Loss of network

connectivity
○ System down
○ Bad credentials

Gradual Problems
Data changes

○ Trend and seasonality
○ Distribution of

features changes
○ Relative importance of

features changes

World changes

○ Styles change
○ Competitors change
○ Business expands to

other geos

Why “Understand” the model?

Mispredictions do not have uniform cost to your business.

The data you have is rarely the data you wish you had.

Model objective is nearly always a proxy for your business objectives

Some percentage of your customers may have a bad experience

The real world doesn’t stand still

Production ML and Change

● Ground truth changes slowly (months, years)
● Model retraining driven by:

○ Model improvements, better data
○ Changes in software and/or systems

● Labeling
○ Curated datasets
○ Crowd-based

Easy Problems

● Ground truth changes faster (weeks)
● Model retraining driven by:

○ Declining model performance
○ Model improvements, better data
○ Changes in software and/or systems

● Labeling
○ Direct feedback
○ Crowd-based

Harder Problems

● Ground truth changes very fast (days, hours, min)
● Model retraining driven by:

○ Declining model performance
○ Model improvements, better data
○ Changes in software and/or systems

● Labeling
○ Direct feedback
○ Weak supervision

Really Hard Problems

Machine Learning

In addition to training an amazing model ...

Modeling Code

… a production solution requires so much more

Configuration

Data Collection
Data Verification

Feature Extraction Process Management Tools

Analysis Tools

Machine Resource
Management

Serving
Infrastructure Monitoring

ML Code

Tales From The Trenches

https://twitter.com/ginablaber/status/971450218095943681

TensorFlow Extended (TFX)

Powers Alphabet’s most important bets and products

Tensorflow Extended (TFX)

Ranking Tweets with
TensorFlow - Twitter
https://goo.gle/tf-twitter-rank

“... we have re-tooled our
machine learning platform to
use TensorFlow. This yielded
significant productivity gains
while positioning ourselves to
take advantage of the latest
industry research.”

Production Machine Learning
Machine Learning Development

● Labeled data

● Feature space coverage

● Minimal dimensionality

● Maximum predictive data

● Fairness

● Rare conditions

● Data lifecycle management

Production Machine Learning
Modern Software Development

● Scalability

● Extensibility

● Configuration

● Consistency & Reproducibility

● Modularity

● Best Practices

● Testability

● Monitoring

● Safety & Security

Machine Learning Development

● Labeled data

● Feature space coverage

● Minimal dimensionality

● Maximum predictive data

● Fairness

● Rare conditions

● Data lifecycle management

+

Production Machine Learning
“Hidden Technical Debt in Machine Learning Systems”

NIPS 2015

http://bit.ly/ml-techdebt

http://bit.ly/ml-techdebt

Libraries

Components

TFX Production Components
Data

Validation

Feature
Engineerin

g

Train
Model

Data
Ingestion

Validate
Model

Push If
Good

Serve
Model

Bulk Inference

Horizontal Layers Coordinate Components

28

Data
Ingestion

TensorFlow
Data Validation

TensorFlow
Transform

Estimator
Model

TensorFlow
Model Analysis

TensorFlow
Serving

Enregistre
ment

Shared Utilities for Garbage Collection, Data Access Controls

Pipeline Storage

Shared Configuration Framework and Job Orchestration

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization

What is a TFX component?

What makes a Component

Coordinates job execution

Performs the work

Updates ml.metadata

What makes a Component?

Well defined config

What makes a Component?

What makes a Component?

Orchestration Styles

Task-Aware Pipelines

Task- and Data-Aware Pipelines
Metadata Store

TFX Orchestration

Bring your own Orchestrator
Flexible runtimes run components in the proper order using
orchestration systems such as Airflow, Kubeflow, or Beam

Apache Airflow Kubeflow Pipelines

Orchestrators and DAGs
Apache Beam

TFX and Kubeflow Pipelines
Kubeflow Pipelines

● Metadata tracking + caching enabled, ability to

resume pipelines from crashes.

● Containers as custom components

● Orchestrate existing R/C++/Scala components

and get metadata tracking + caching

● Artifact provenance and lineage visualized

● Deploy using Marketplace

● CloudSQL can be used to persist pipeline

metadata across clusters

TensorFlow Extended (TFX)

● Open-source version of what Google uses

internally for Production ML

● Currently supported orchestrators:

○ Kubeflow

○ Apache Airflow

○ Apache Beam

○ We’re adding more

○ You can add more

TFX Orchestration in a Notebook
● Experimental environment for iterative development
● Build up your pipeline iteratively in a Jupyter / Colab notebook

and export to production with minimal changes
● InteractiveContext object handles component execution and

artifact visualization
● In production, you would use Airflow, Kubeflow, or similar

context = InteractiveContext()

component = MyComponent(...)
context.run(component)
context.show(component.outputs['my_output'])

Metadata Store

Type definitions of Artifacts and their Properties

What is in Metadata Store?

Type definitions of Artifacts and their Properties

Execution Records (Runs) of Components

What is in Metadata Store?

Type definitions of Artifacts and their Properties

Execution Records (Runs) of Components

Data Provenance Across All Executions

What is in Metadata Store?

Metadata-Powered
Functionality

Find out which data a model
was trained on

Metadata-Powered
Functionality

Compare previous model runs

Metadata-Powered
Functionality

Re-use previously computed
outputs

Metadata-Powered
Functionality

Carry-over state from previous
model runs

Distributed Pipeline Processing:
Apache Beam

What is Apache Beam?

- A unified batch and stream distributed processing API

- A set of SDK frontends: Java, Python, Go, Scala, SQL

- A set of Runners which can execute Beam jobs into various
backends: Local, Apache Flink, Apache Spark, Apache
Gearpump, Apache Samza, Apache Hadoop, Google Cloud
Dataflow, …

Apache Beam

Sum Per Key

input | Sum.PerKey()

Python

input.apply(

 Sum.integersPerKey())

Java

stats.Sum(s, input)

Go

SELECT key, SUM(value)

FROM input GROUP BY key

SQL

⋮

Cloud Dataflow

Apache Spark

Apache Flink

Apache Apex

Gearpump

Apache Samza

Apache Nemo
(incubating)

IBM Streams

TFX Components & Beam

Beam
Flink Dataflow

Executor

Spark

TFX Standard Components

Bulk InferenceExampleGen

BATCH
INFERENCE

DATA
(UNLABELED)

Component: ExampleGen

example_gen = CsvExampleGen(input_base=external_input(data_root))

Configuration

ExampleGen

Raw Data

Inputs and Outputs

CSV TF Record

Split TF
Record Data

Training

Eval

Component: StatisticsGen

statistics_gen = StatisticsGen(
 input_data=example_gen.outputs['examples'])

Visualization

StatisticsGen

Data

ExampleGen

Statistics

ConfigurationInputs and Outputs

Analyzing Data with TensorFlow Data Validation

Component: SchemaGen

SchemaGen

Statistics

StatisticsGen

Schema

infer_schema =
 SchemaGen(statistics=statistics_gen.outputs['statistics'],
 infer_feature_shape=False)

Visualization

ConfigurationInputs and Outputs

Component: ExampleValidator

Example
Validator

Statistics Schema

StatisticsGen SchemaGen

Anomalies
Report

validate_stats = ExampleValidator(
 statistics=statistics_gen.outputs['statistics'],
 schema=infer_schema.outputs['schema'])

Visualization

ConfigurationInputs and Outputs

Component: Transform

transform = Transform(
 examples=example_gen.outputs['output_data'],
 schema=infer_schema.outputs['schema'],
 module_file=module_file)

for key in _DENSE_FLOAT_FEATURE_KEYS:
 outputs[_transformed_name(key)] = transform.scale_to_z_score(
 _fill_in_missing(inputs[key]))
...

outputs[_transformed_name(_LABEL_KEY)] = tf.where(
 tf.is_nan(taxi_fare),
 tf.cast(tf.zeros_like(taxi_fare), tf.int64),
 # Test if the tip was > 20% of the fare.
 tf.cast(
 tf.greater(tips, tf.multiply(taxi_fare, tf.constant(0.2))), tf.int64))

...

Transform

Data Schema

Transform
Graph

Transformed
Data

ExampleGen SchemaGen

Trainer

Code

Code

ConfigurationInputs and Outputs

Using TensorFlow Transform for Feature Engineering

Using TensorFlow Transform for Feature Engineering

Training Serving

Component: Trainer

Trainer

Data Schema

Transform SchemaGen

Evaluator

Code

Transform
Graph

Model
Validator Pusher

Model(s)

Highlight: SavedModel Format

TensorFlow
Serving

TensorFlow
Model Analysis

Train, Eval, and Inference Graphs

SignatureDefEvalSavedModel

SavedModel

Inputs and Outputs

Component: Trainer

trainer = Trainer(
 module_file=module_file,
 transformed_examples=
 transform.outputs['transformed_examples'],
 schema=infer_schema.outputs['schema'],
 transform_graph=transform.outputs['transform_graph'],
 train_args=trainer_pb2.TrainArgs(num_steps=10000),
 eval_args=trainer_pb2.EvalArgs(num_steps=5000))

Just TensorFlow :)

Trainer

Data Schema

Transform SchemaGen

Evaluator

Code

Transform
Graph

Model
Validator Pusher

Model(s)

Inputs and Outputs

Code

Configuration

Component: Evaluator

Evaluator

Data Model

ExampleGen Trainer

Evaluation
Metrics

Visualization

ConfigurationInputs and Outputs

model_analyzer = Evaluator(
 examples=example_gen.outputs['output_data'],
 model=trainer.outputs['model'],
 feature_slicing_spec=evaluator_pb2.FeatureSlicingSpec(
 specs=[evaluator_pb2.SingleSlicingSpec(
 column_for_slicing=['trip_start_hour'])]))

Component: ModelValidator

● Validate using current eval data
● “Next-day eval”, validate using unseen data

Model
Validator

Data

ExampleGen Trainer

Validation
Outcome

Model (x2)

model_validator = ModelValidator(
 examples=example_gen.outputs['output_data'],
 model=trainer.outputs['model'])

ConfigurationInputs and Outputs

Configuration Options

Component: Pusher

Validation
Outcome

Pusher

Model
Validator

Pusher
PusherDeployment

Options

pusher = Pusher(
 model=trainer.outputs['model'],
 model_blessing=model_validator.outputs['blessing'],
 push_destination=pusher_pb2.PushDestination(
 filesystem=pusher_pb2.PushDestination.Filesystem(
 base_directory=serving_model_dir)))

Block push on validation outcome

Push destinations supported today
● Filesystem (TensorFlow Lite, TensorFlow JS)
● TensorFlow Serving

ConfigurationInputs and Outputs

Component: BulkInferrer

Validation
Outcome

BulkInferrer

Model
Validator

Pusher
PusherInference

Result

Block batch inference on a successful model validation.
Choose the inference examples from example gen's output.
Choose the signatures and tags of inference model.

Inputs and Outputs

Configuration Options

ExampleGen

Unlabelled
examples

Trainer

Model

Inference Result

Contains features and predictions.

bulk_inferrer = BulkInferrer(
 examples=inference_example_gen.outputs[‘examples’],
 model_export=trainer.outputs[‘output’],
 model_blessing=model_validator.outputs[‘blessing’],
 data_spec=bulk_inferrer_pb2.DataSpec(
 example_splits=[‘unlabelled’]),
 model_spec=bulk_inferrer_pb2.ModelSpec())

Configuration

TFX Custom Components

Extend the existing components
Replace the default component executor with your

own code, providing the ability to extend existing
components with your own implementation.

Semi-Custom Component:

Overriding with your own executor

● Start with an existing component

● Extend BaseExecutor and implement Do()

● Add your custom code into the Do() method

● Use custom_config parameters to add inputs to the custom executor

class Executor(base_executor.BaseExecutor):

 def Do(self, input_dict,
 output_dict,
 exec_properties):

Executors do the work

Beam
Flink Dataflow

TRANSFORM, ETC..

Spark

Executors do the work

TensorFlow

TRAINER

Executors do the work

PUSHER

Semi-Custom
Component

Build your own component
Create your own components to run within a TFX

pipeline while still providing the benefits of metadata
management, lineage, and pipeline monitoring.

Custom Component:

New Component Inputs & Outputs
Use ComponentSpec to define the new inputs and outputs

● INPUTS: Input artifacts that will be passed into the executor
● OUTPUTS: Output artifacts which the executor will produce
● PARAMETERS: Additional properties required by the executor. These are non-artifact

parameters defined in the pipeline DSL and passed into execution.

class MyComponentSpec(types.ComponentSpec):

 PARAMETERS = {
 'timeout_sec': ExecutionParameter(type=int),
 }
 INPUTS = {
 'model_export': ChannelParameter(type_name='ModelExportPath'),
 }
 OUTPUTS = {
 'MyBlessing': ChannelParameter(type_name='ModelBlessingPath'),
 }

Custom Component:

Your Executor, Inputs, Outputs, and Params

Same as when just doing a custom executor, but with the custom
inputs and outputs defined in your custom ComponentSpec

class Executor(base_executor.BaseExecutor):
 """Start a trainer job on Google Cloud AI Platform."""

 def Do(self, input_dict,
 output_dict,
 exec_properties):
 """Starts a trainer job on Google Cloud AI Platform.

… back to the shoes

You’re an Online
Retailer Selling
Shoes ...

Your model predicts
click-through rates (CTR),
helping you decide how much
inventory to order

When suddenly

Your AUC and prediction accuracy
have dropped on men’s dress shoes!

● Problems are with current inference results

○ Example data will be from current inference requests

○ Not your training data

● Monitor to find problems early

Detecting Problems With Deployed Models

● To measure model performance, you need labels
○ Process feedback - Example: Actual versus predicted click-through

○ Semi-supervision - Human labeling - Expensive, limited

○ Weak supervision - Historical data, heuristics, comparison to other
models

Detecting Problems With Deployed Models

First Things First

Check your data with the ExampleValidator component and
the tools in TensorFlow Data Validation:

● No outliers

● No missing features

● Minimal distribution shift

shoe_sizeshoe_size

price

Analyze your model performance

● Check your current model performance with current data

○ Define slices for your domain - like Men’s Dress Shoes

○ Create labeled dataset from current inference requests

○ Use the Evaluator component and the tools in TensorFlow Model Analysis

○ If necessary, retrain your model

br
ic

k

lig
ht

...
m

ed
i..

.

gr
ey

bl
ac

k
br

ow
n

da
rk

...
m

ap
le

ta
n

ol
iv

e

w
hi

te

iv
or

y

bo
ne

cr
ea

m

ba
na

...
be

ig
e

re
d

sc
ar

...
na

vy
...

bl
ue

im
pe

...
da

rk
...

pi
nk

go
ld

brick

light grey

Feature Space
Coverage

● Identify regions in feature space
where data coverage is sparse

● Collect more examples in sparse
regions, if possible!

● Carefully add features to help
create distinctions you’d like the
model to make

Understand the input your model is
receiving

Ask and answer “what-if” questions
about your model’s output

Compare model performance
across different slices of your data

Compare performance across
multiple models

Explore your model
and data

What-if tool

Quantify the Cost

Your model will never be 100%

● What does that extra performance cost?
● How does it affect different slices?

0.9573

TensorFlow Extended (TFX)

Standard components for your production model needs

Flexible orchestration and metadata

Extensible with custom components

https://www.tensorflow.org/tfx

Thank you!

Robert Crowe
TensorFlow Developer Advocate

 @robert_crowe

Helpful resources

Web

Repo

Community

YouTube

https://tensorflow.org/tfx

https://github.com/tensorflow/tfx

https://goo.gle/tfx-group

https://goo.gle/tfx-youtube

https://tensorflow.org/tfx
https://github.com/tensorflow/tfx
https://goo.gle/tfx-group
https://goo.gle/tfx-youtube

https://freephotos.cc/shoes#404168
https://pixabay.com/photos/confused-hands-up-unsure-perplexed-2681507/
https://pixabay.com/photos/shoe-handmade-shoes-dress-shoes-632702/
https://pixabay.com/photos/shoes-brown-leather-fashion-2434210/
https://pixabay.com/photos/turtle-tortoise-reptile-2815539/
https://pixabay.com/photos/dog-and-cat-free-pet-cat-isolated-3484559/
https://pixabay.com/photos/sneakers-chuck-s-sneaker-shoe-2768263/
https://pixabay.com/photos/high-heeled-shoes-pumps-2781084/
https://pixabay.com/photos/business-stock-finance-market-1730089/
https://pixabay.com/vectors/tag-ticket-label-hole-color-35797/
https://pixabay.com/photos/isolated-hare-nature-animal-grass-2014108/

