

Robert Crowe Google

J Follow us @gotocph

GOTO Copenhagen 2019 Conference Nov. 18 - 20

Taking Machine Learning **Research to Production: Solving Real Problems**

Let us know what you think

J Follow us @gotocph

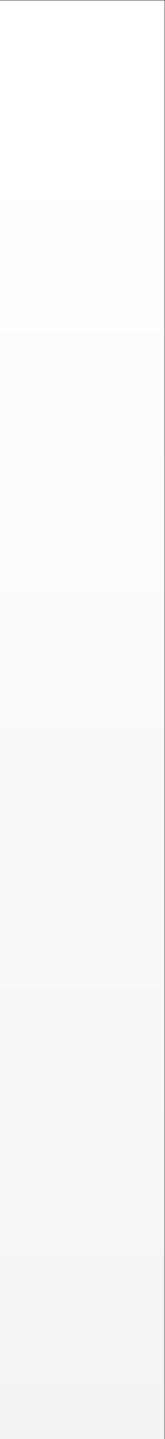
GOTO Copenhagen 2019 Conference Nov. 18 - 20

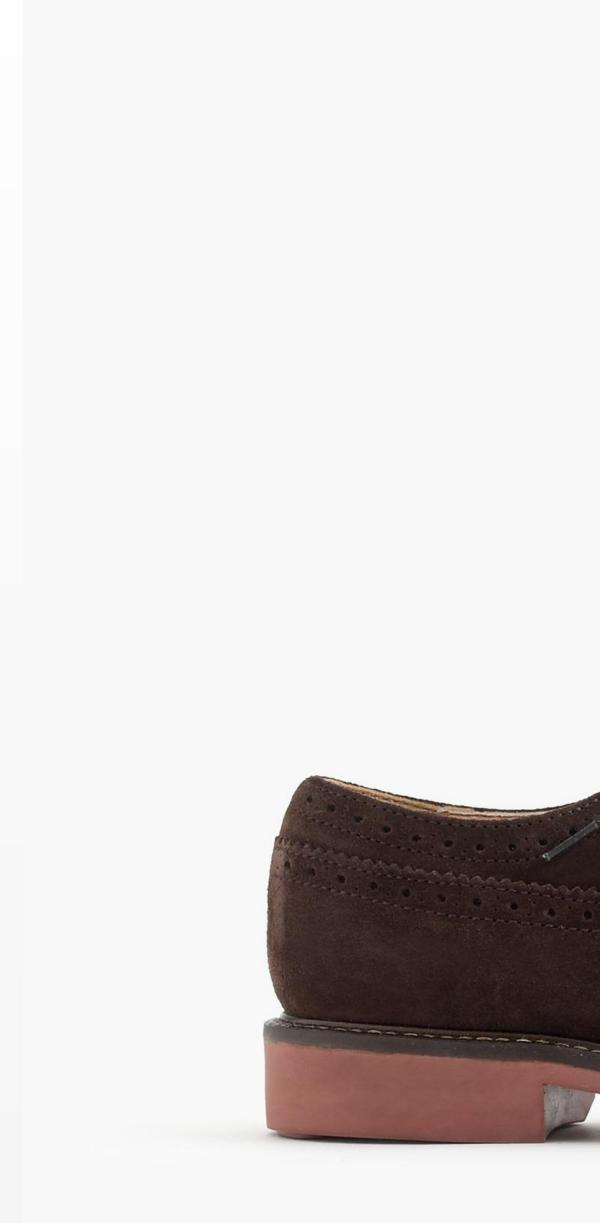
Click 'Rate Session' to rate session and ask questions.

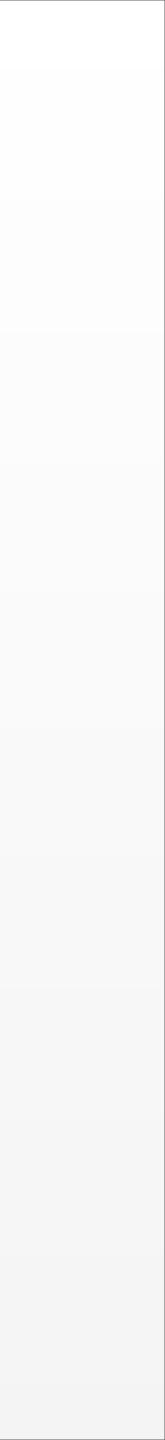
Imagine if you will ...

You're an Online Retailer Selling Shoes ...

Your model predicts click-through rates (CTR), helping you decide how much inventory to order





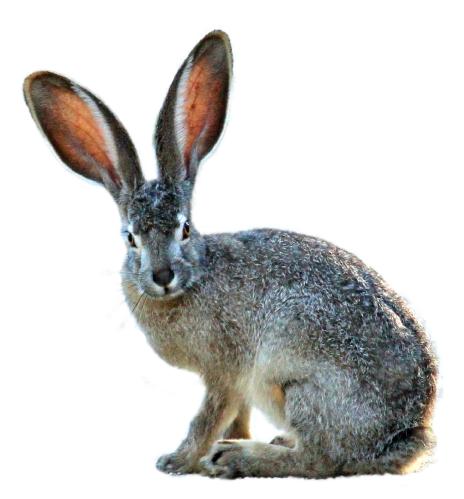


What causes problems?

Kinds of problems

- Slow Example: drift

• Fast - Example: bad sensor, bad software update



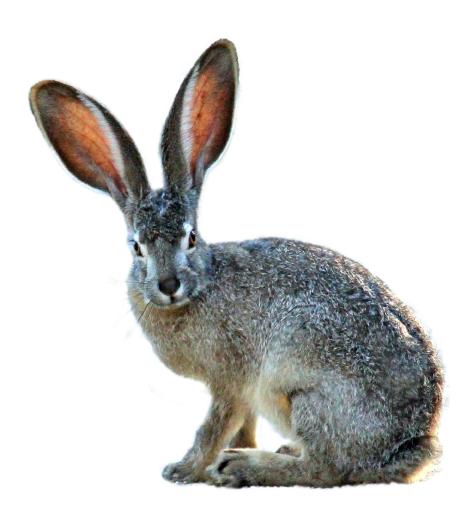
Sudden Problems

Problem with data collection

- Bad sensor/camera
- Bad log data
- Moved or disabled sensors/cameras

Systems problem

- Bad software update
- Loss of network connectivity
- System down
- Bad credentials



Gradual Problems

Data changes

• Trend and seasonality • **Distribution of** features changes • Relative importance of features changes

World changes

- Styles change
- Competitors change
- Business expands to

other geos

Why "Understand" the model?

Mispredictions do not have uniform **cost** to your business.

The data you have is rarely the data you wish you had.

Some percentage of your customers may have a **bad experience**

The real world doesn't stand still

- Model objective is nearly always a **proxy** for your business objectives

Production ML and Change

Easy Problems

- Ground truth changes slowly (months, years)
- Model retraining driven by:
 - Model improvements, better data
 - Changes in software and/or systems
- Labeling
 - Curated datasets
 - Crowd-based

Harder Problems

- Ground truth changes faster (weeks)
- Model retraining driven by:
 - Declining model performance
 - Model improvements, better data
 - Changes in software and/or systems
- Labeling
 - Direct feedback
 - Crowd-based



Really Hard Problems

- Model retraining driven by:
 - Declining model performance
 - Model improvements, better data
 - Changes in software and/or systems
- Labeling
 - Direct feedback
 - Weak supervision

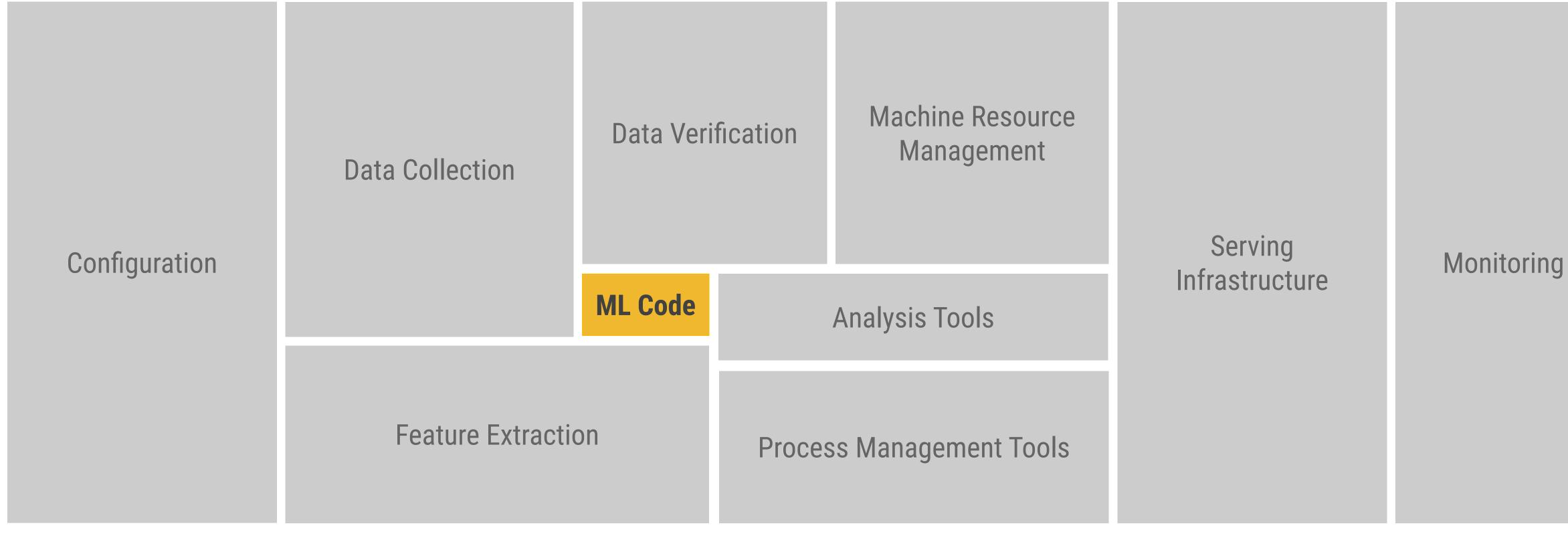
Ground truth changes very fast (days, hours, min)

Machine Learning

In addition to training an amazing model ...

Modeling Code

... a production solution requires so much more





Tales From The Trenches

ginablaber @ginablaber

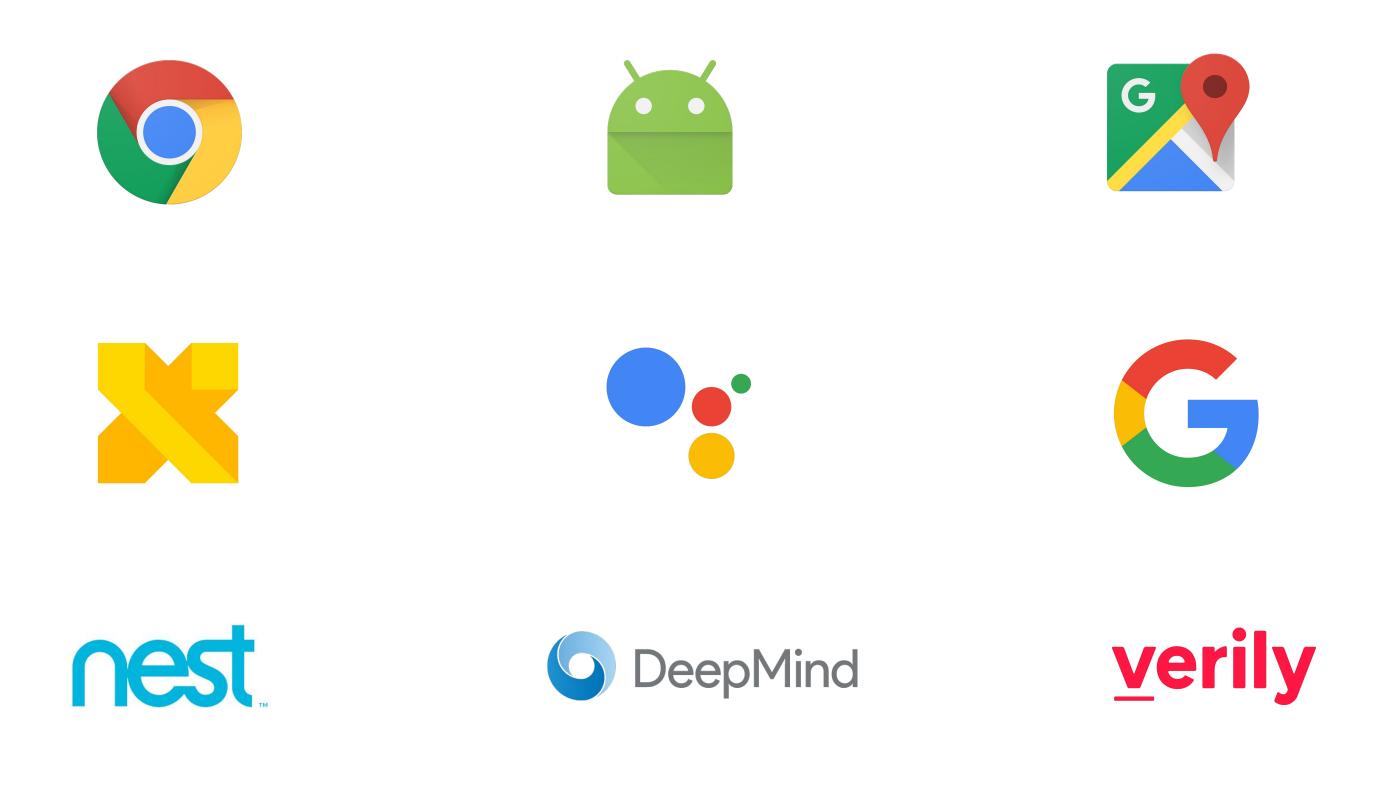
10:19 AM - 7 Mar 2018

https://twitter.com/ginablaber/status/971450218095943681

TensorFlow Extended (TFX)

Tensorflow Extended (TFX)

Powers Alphabet's most important bets and products



LOON T

"... we have re-tooled our machine learning platform to use TensorFlow. This yielded significant productivity gains while positioning ourselves to take advantage of the latest industry research."

Ranking Tweets with TensorFlow - Twitter

https://goo.gle/tf-twitter-rank

Production Machine Learning

Machine Learning Development

- Labeled data
- Feature space coverage
- Minimal dimensionality
- Maximum predictive data
- Fairness
- Rare conditions
- Data lifecycle management

Production Machine Learning

Machine Learning Development

- Labeled data
- Feature space coverage
- Minimal dimensionality
- Maximum predictive data
- Fairness
- Rare conditions
- Data lifecycle management

Modern Software Development

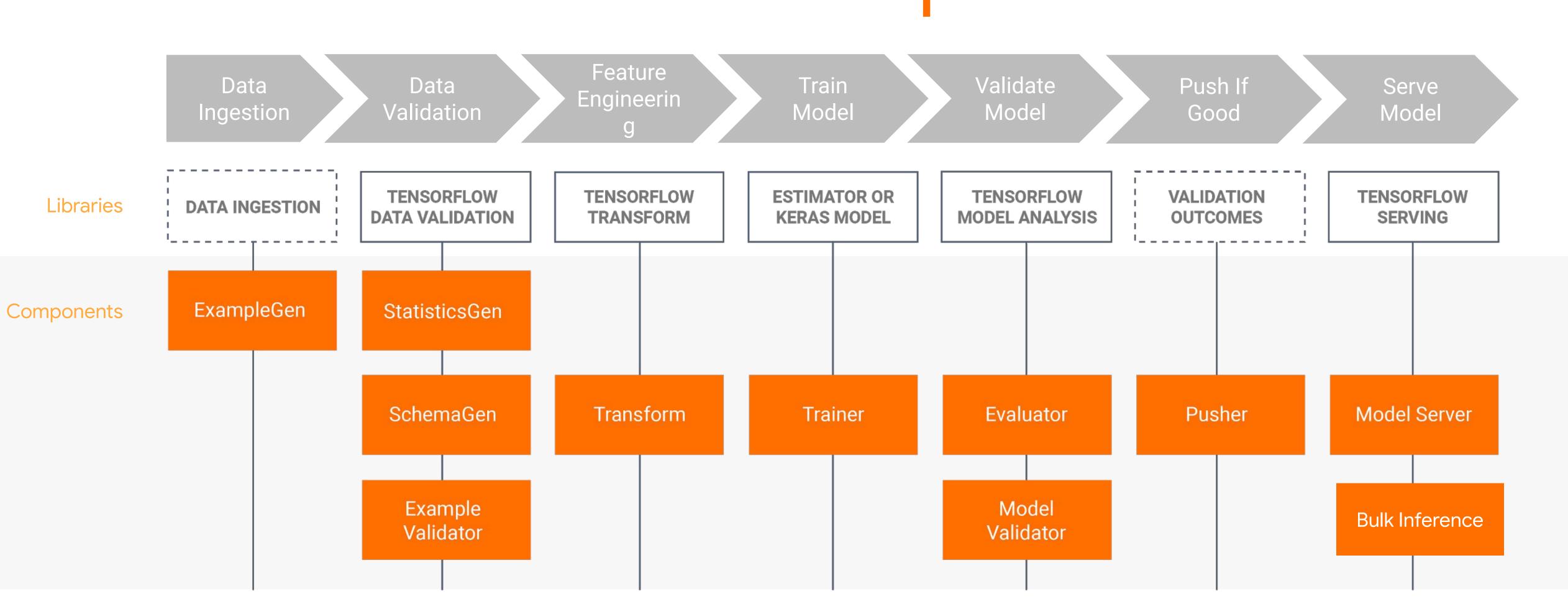
- Scalability
- Extensibility
- Configuration
- Consistency & Reproducibility
- Modularity
- Best Practices
- Testability
- Monitoring
- Safety & Security

Production Machine Learning

"Hidden Technical Debt in Machine Learning Systems" **NIPS 2015**

http://bit.ly/ml-techdebt

TFX Production Components

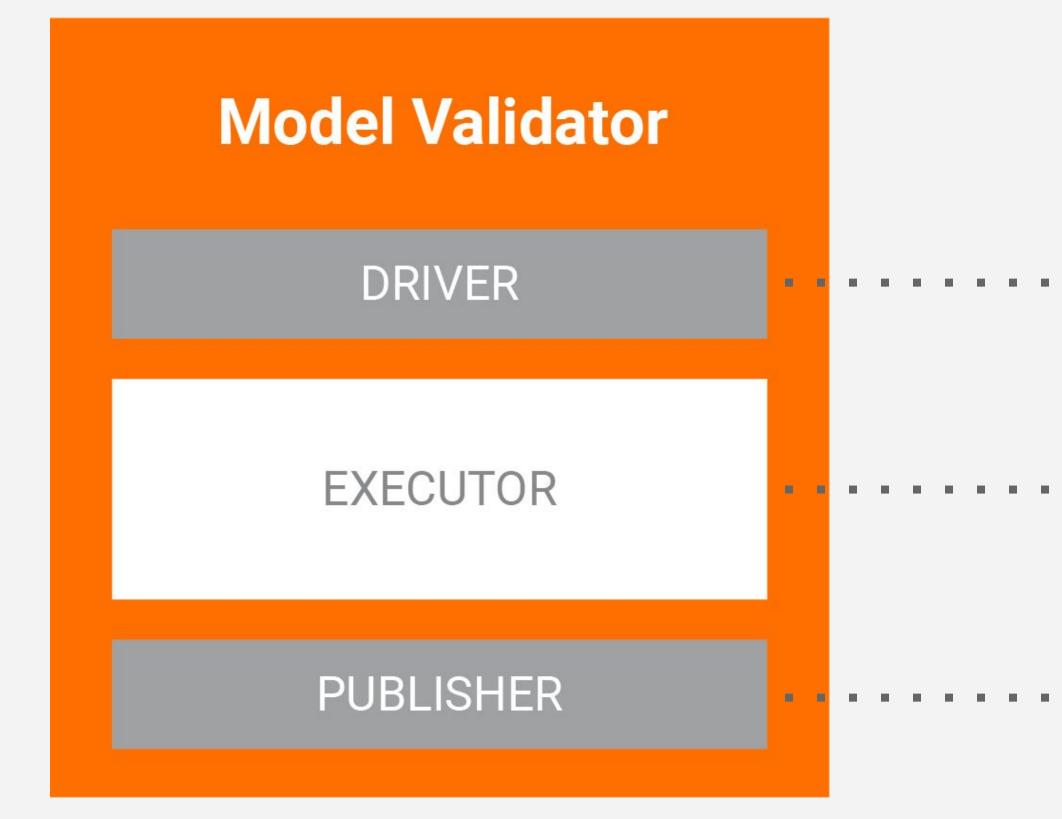


Horizontal Layers Coordinate Components

Frar	ared Configuration F	Sh				
	TensorFlow Transform	TensorFlow Data Validation	Data Ingestion			
age	ed Utilities for Garba	Shared Utilities for Gar				
ipeliı	Pip					
a	Transform	Data Validation				

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization

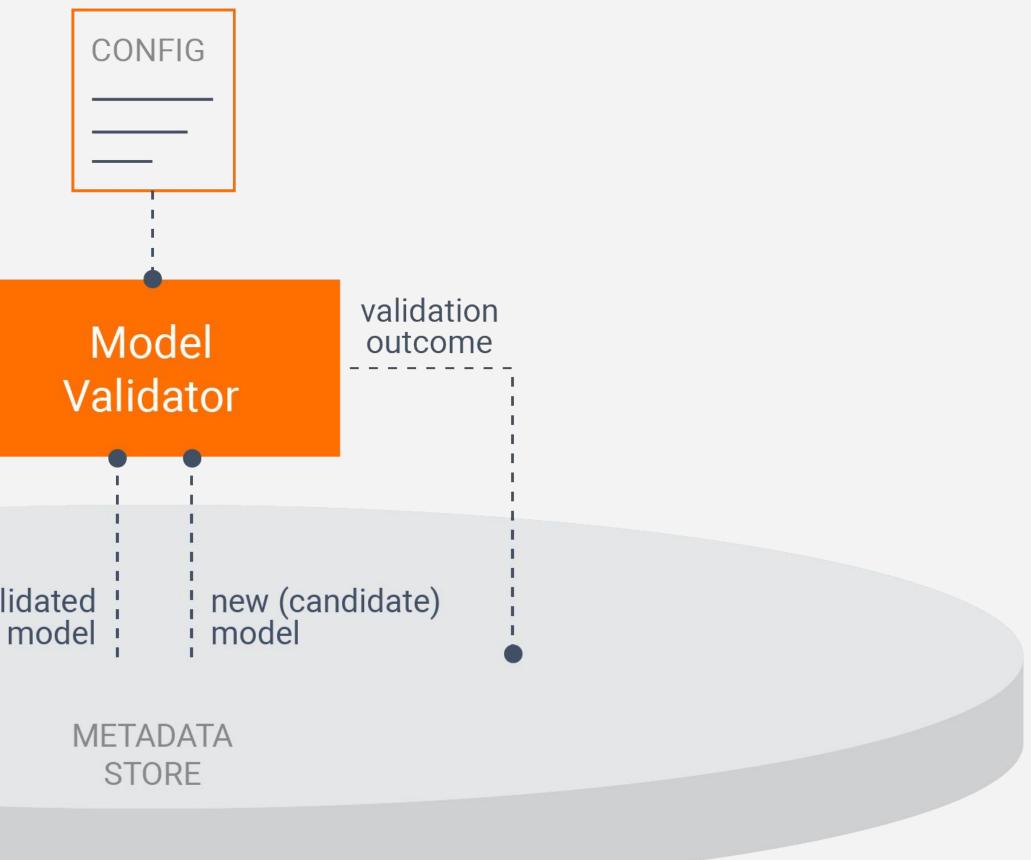
amework and J	ob Orchestration			
Estimator Model	TensorFlow Model Analysis	TensorFlow Serving	Enregistre ment	
e Collection, Da	ta Access Controls			
line Storage				



What makes a Component

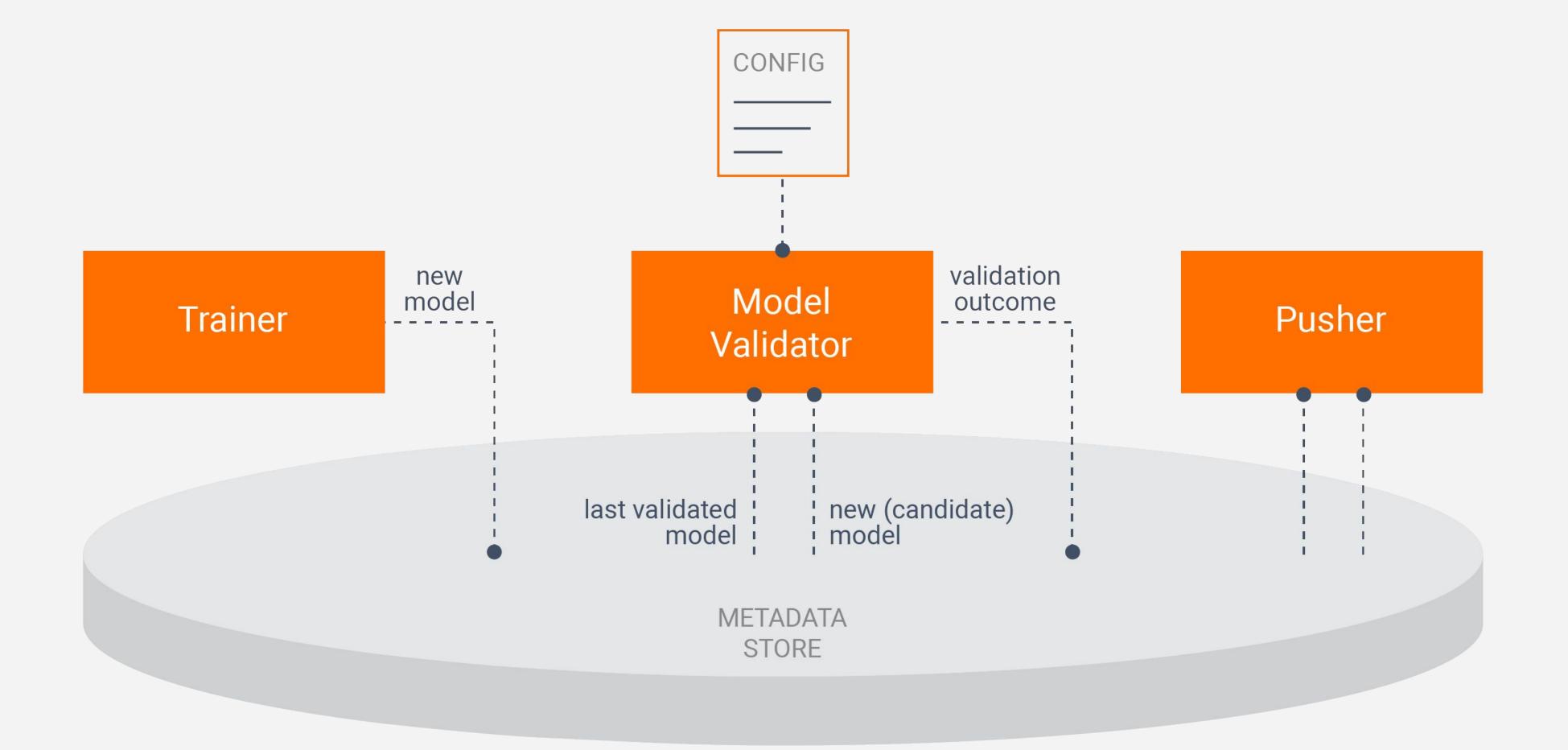
••••••• Coordinates job execution

- Performs the work
- Updates ml.metadata



last validated model

What makes a Component?

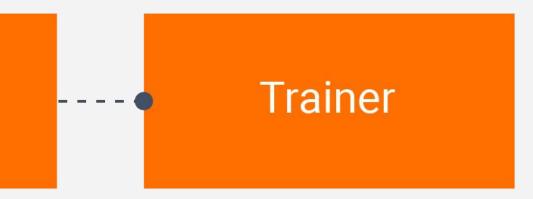


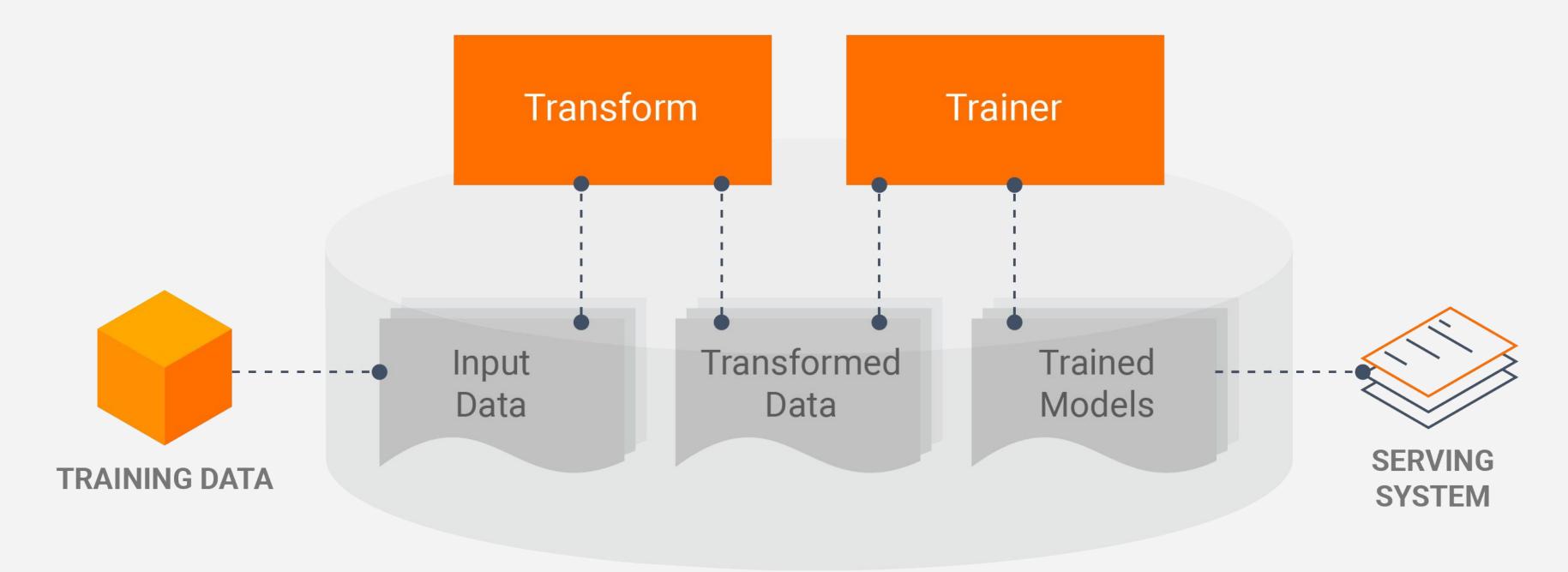
What makes a Component?

Orchestration Styles

Transform

Task-Aware Pipelines



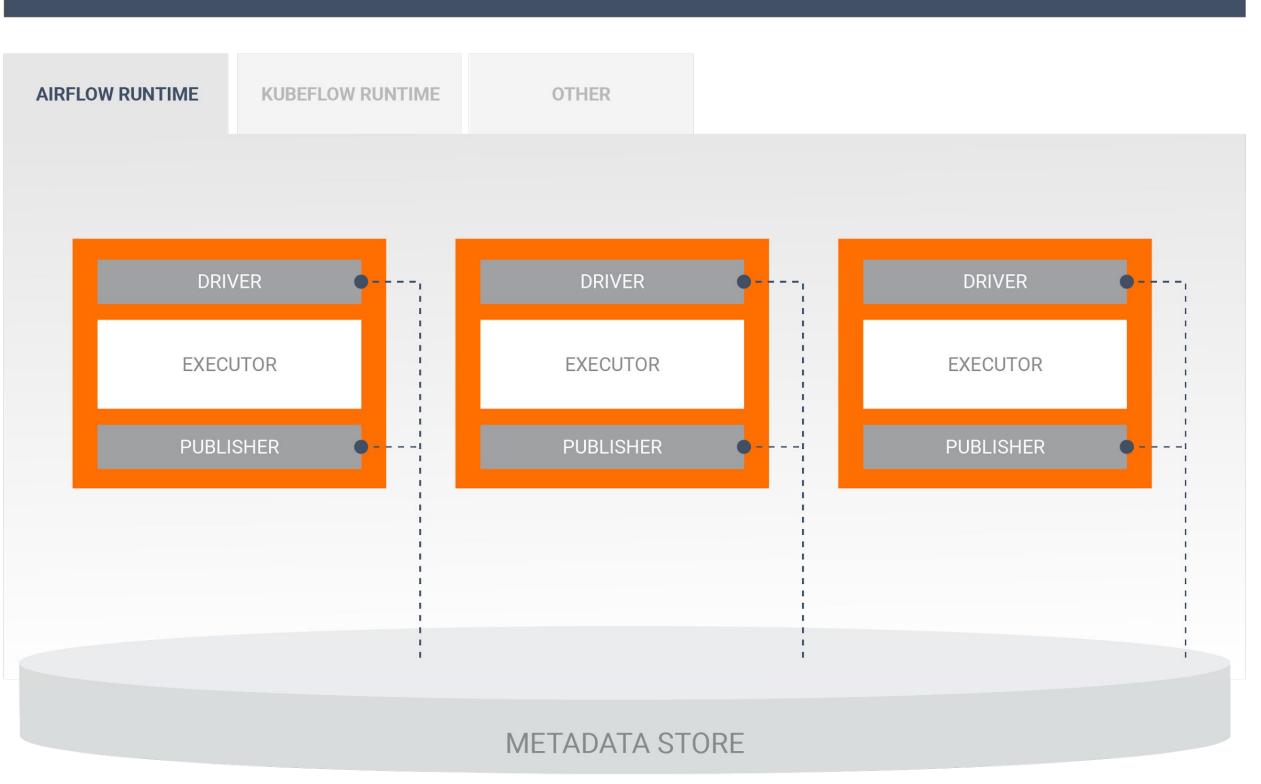


PIPELINE + METADATA STORAGE

Task- and Data-Aware Pipelines

Metadata Store

TFX Orchestration

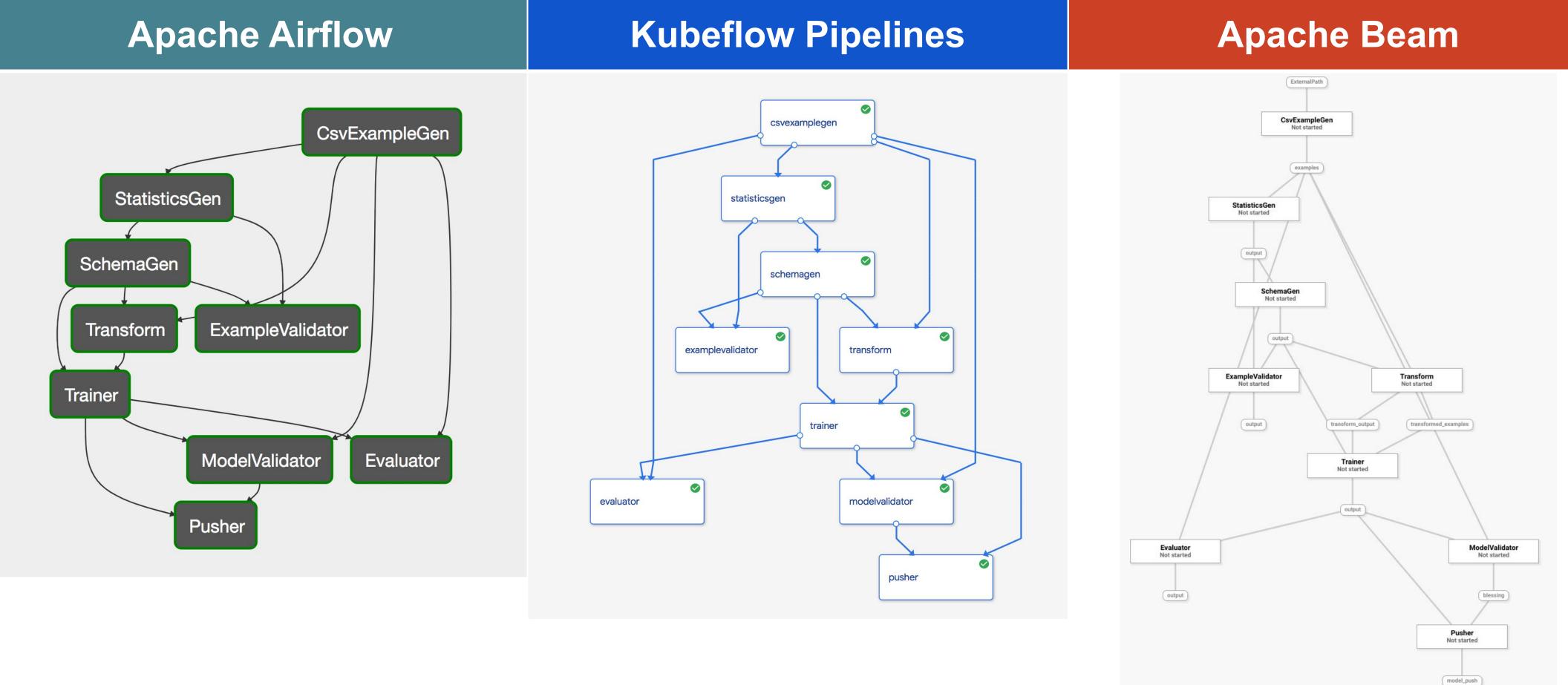


Bring your own Orchestrator

Flexible runtimes run components in the proper order using orchestration systems such as Airflow, Kubeflow, or Beam

TFX CONFIG

Orchestrators and DAGs



TFX and Kubeflow Pipelines

TensorFlow Extended (TFX)

- Open-source version of what Google uses internally for Production ML
- Currently supported orchestrators:
 - Kubeflow \bigcirc
 - Apache Airflow \bigcirc
 - Apache Beam \bigcirc
 - We're adding more \bigcirc
 - You can add more \bigcirc

Kubeflow Pipelines

- Metadata tracking + caching enabled, ability to resume pipelines from crashes.
- Containers as custom components
- Orchestrate existing R/C++/Scala components and get metadata tracking + caching
- Artifact provenance and lineage visualized
- Deploy using Marketplace
- CloudSQL can be used to persist pipeline metadata across clusters

TFX Orchestration in a Notebook

- **Experimental environment for iterative development**
- and export to production with minimal changes
- artifact visualization

context = InteractiveContext()

component = MyComponent(...) context.run(component) context.show(component.outputs['my_output'])

Build up your pipeline iteratively in a Jupyter / Colab notebook InteractiveContext object handles component execution and

In production, you would use Airflow, Kubeflow, or similar

Metadata Store

Trained Models

What is in Metadata Store?

Type definitions of Artifacts and their Properties

Trained Models

Trainer

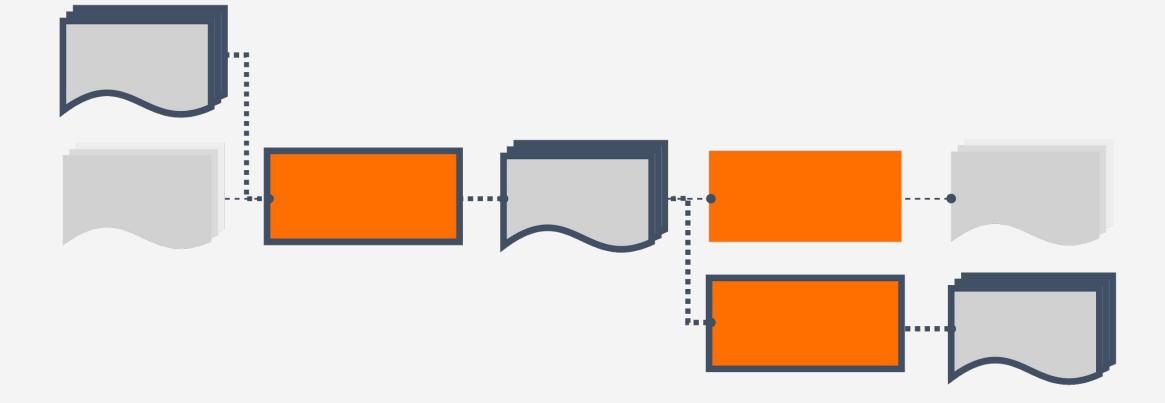
- - - 🔴

What is in Metadata Store?

Type definitions of Artifacts and their Properties

Execution Records (Runs) of Components

Trained Models



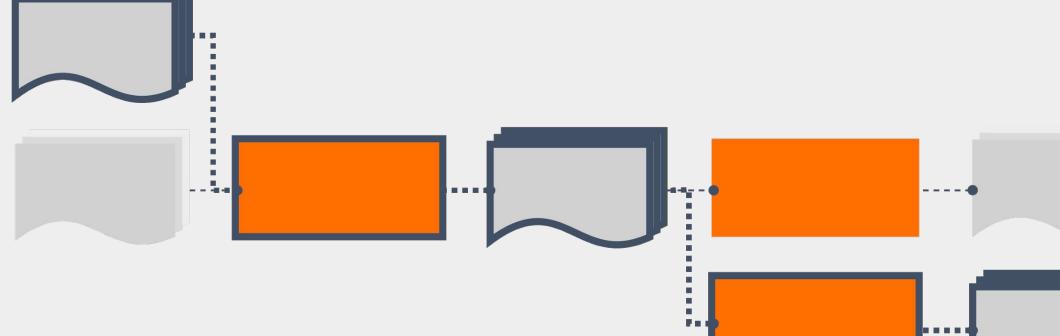
What is in Metadata Store?

Type definitions of Artifacts and their Properties

Execution Records (Runs) of Components

Data Provenance Across All Executions

Find out which data a model was trained on

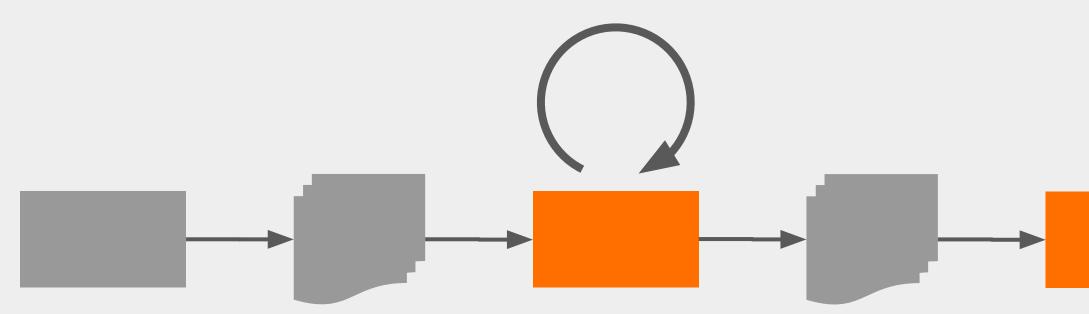


Compare previous model runs

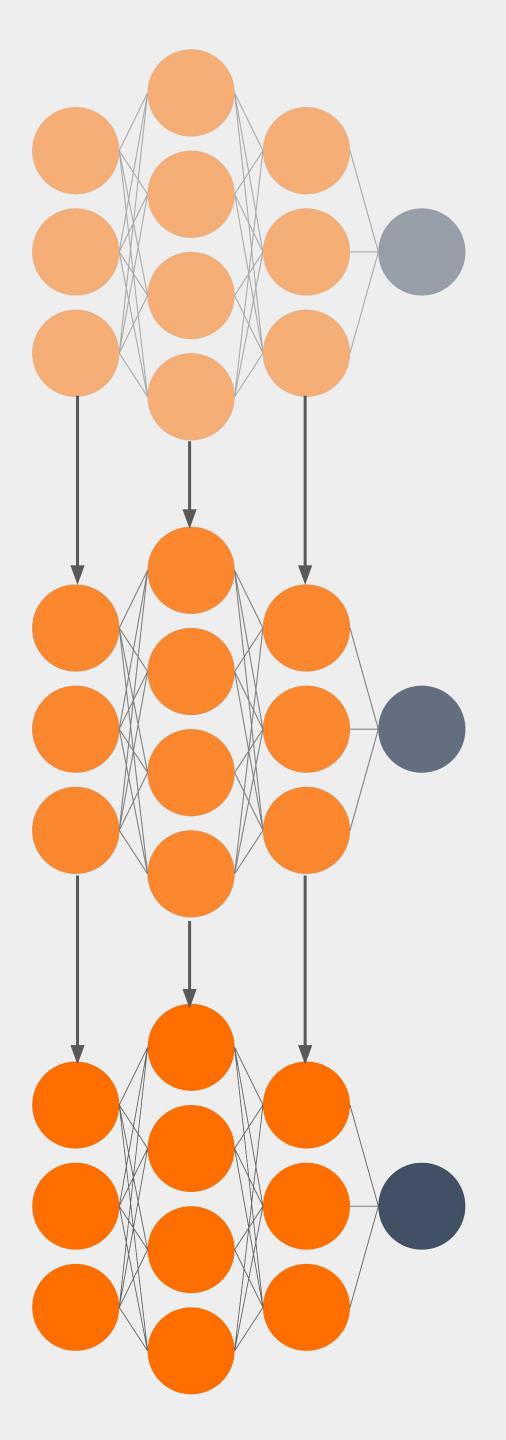
Add metric series

Model	Data	accuracy	accuracy_baseline	auc	auc_precision_recall	average_loss	lab
1536199479	data.csv	0.94880	0.94220	0.93168	0.98516	0.13980	C
1536199433	data.csv	0.94700	0.94220	0.93165	0.98170	0.13979	C
1536199047	data.csv	0.94720	0.94220	0.92914	0.99480	0.14103	C

Re-use previously computed outputs



Carry-over state from previous model runs



Distributed Pipeline Processing: Apache Beam

What is Apache Beam?

- A unified **batch** and stream distributed processing API
- A set of SDK frontends: Java, Python, Go, Scala, SQL
- A set of **Runners** which can execute Beam jobs into various backends: Local, Apache Flink, Apache Spark, Apache Gearpump, Apache Samza, Apache Hadoop, Google Cloud Dataflow, ...

Apache Beam

Java

input.apply(
 Sum.integersPerKey())

Python

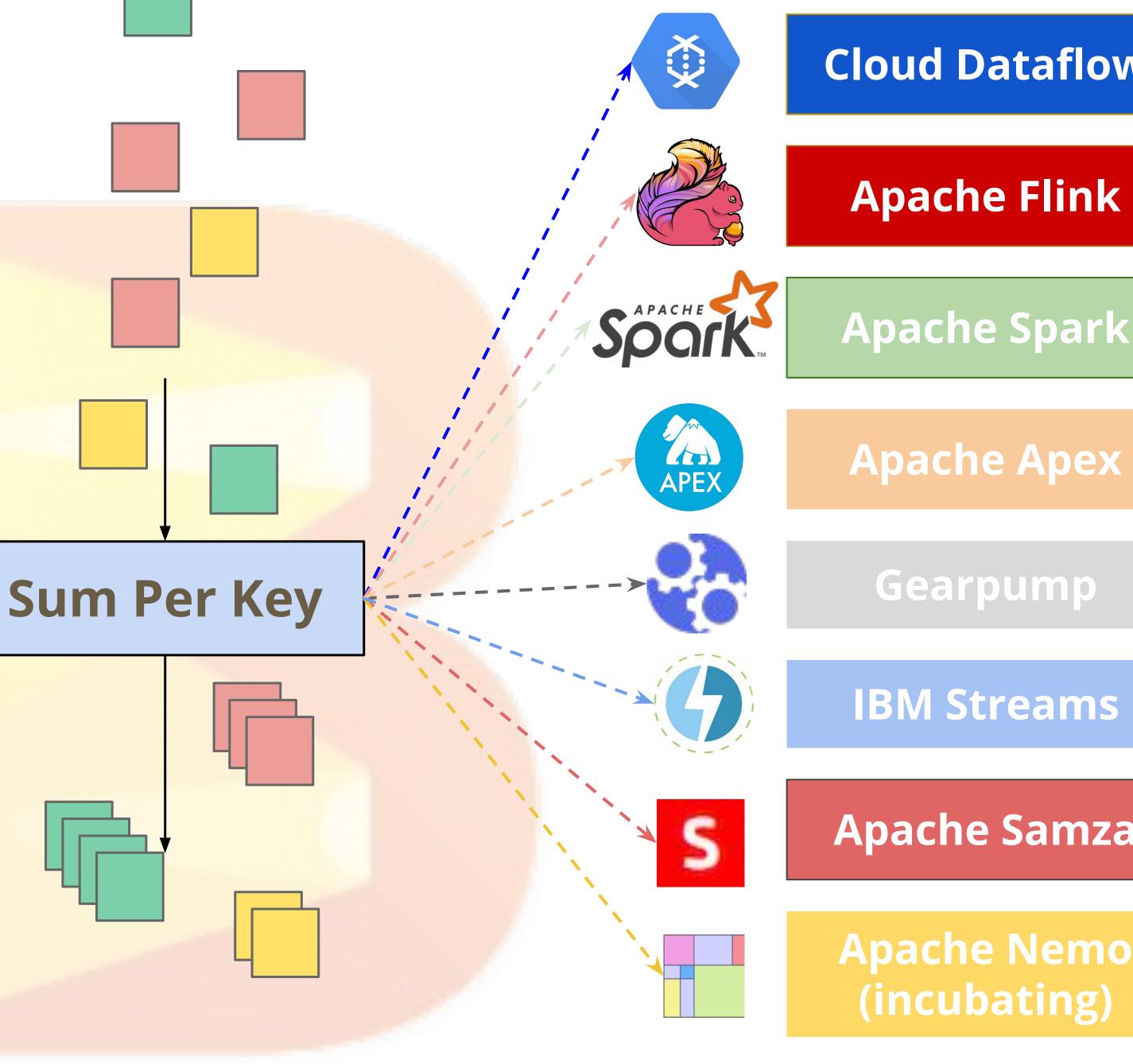
input | Sum.PerKey()

Go

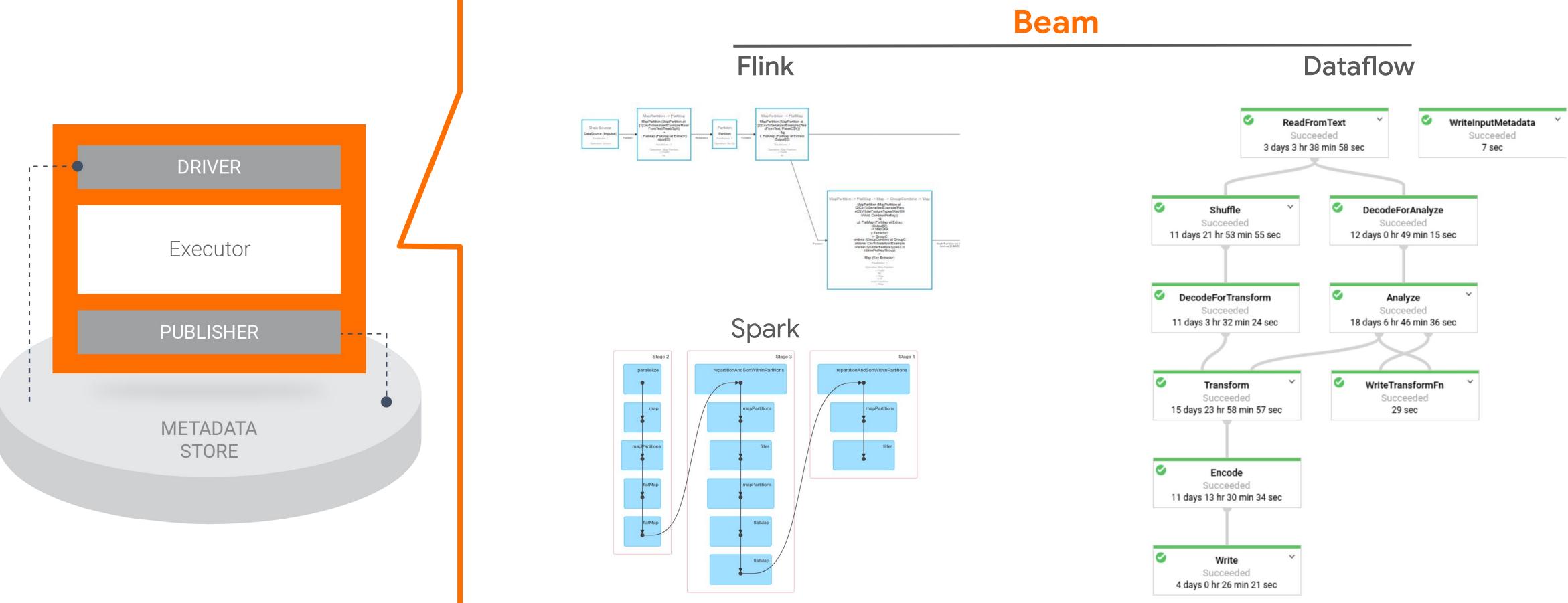
stats.Sum(s, input)

SQL

SELECT key, SUM(value)
FROM input GROUP BY key

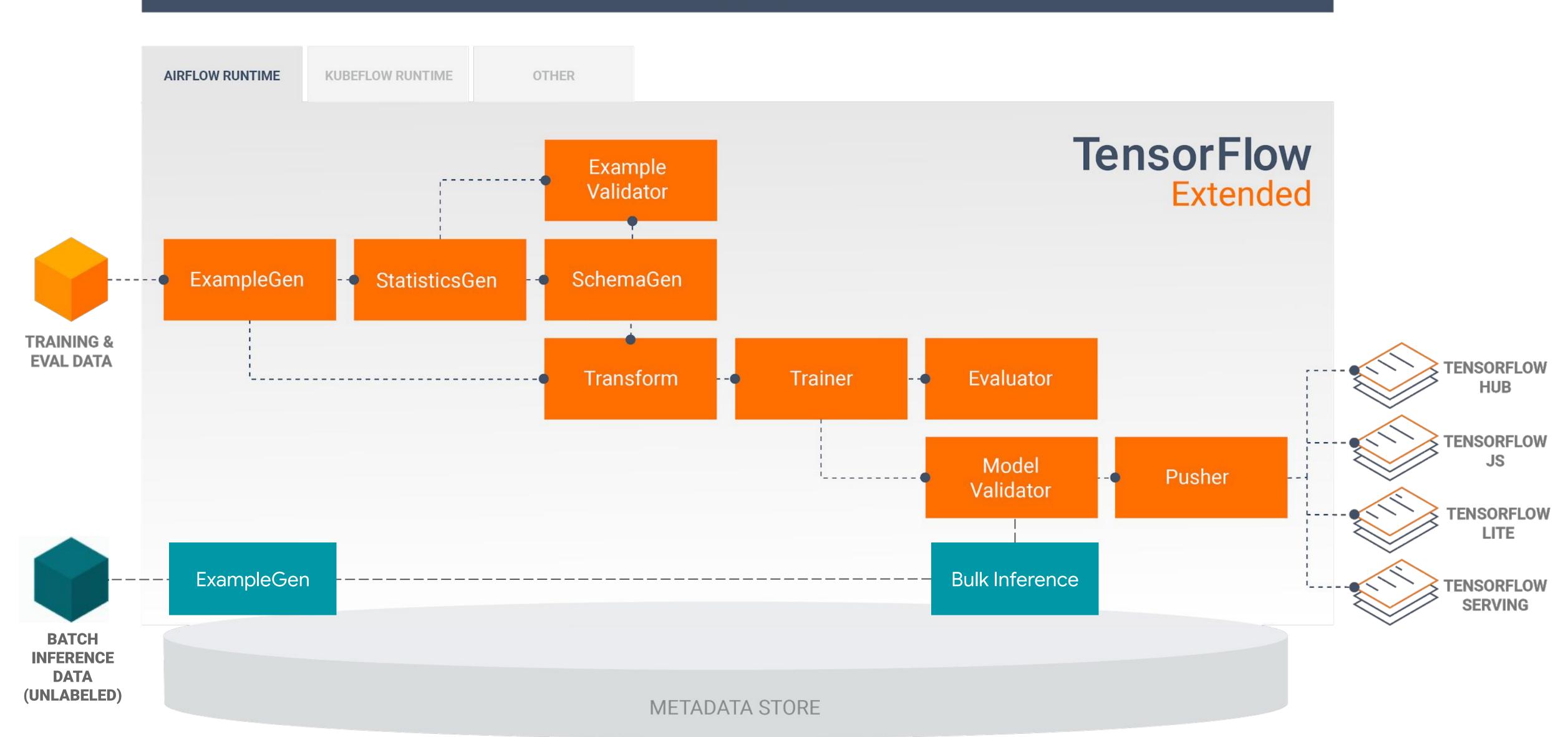


N		
3		



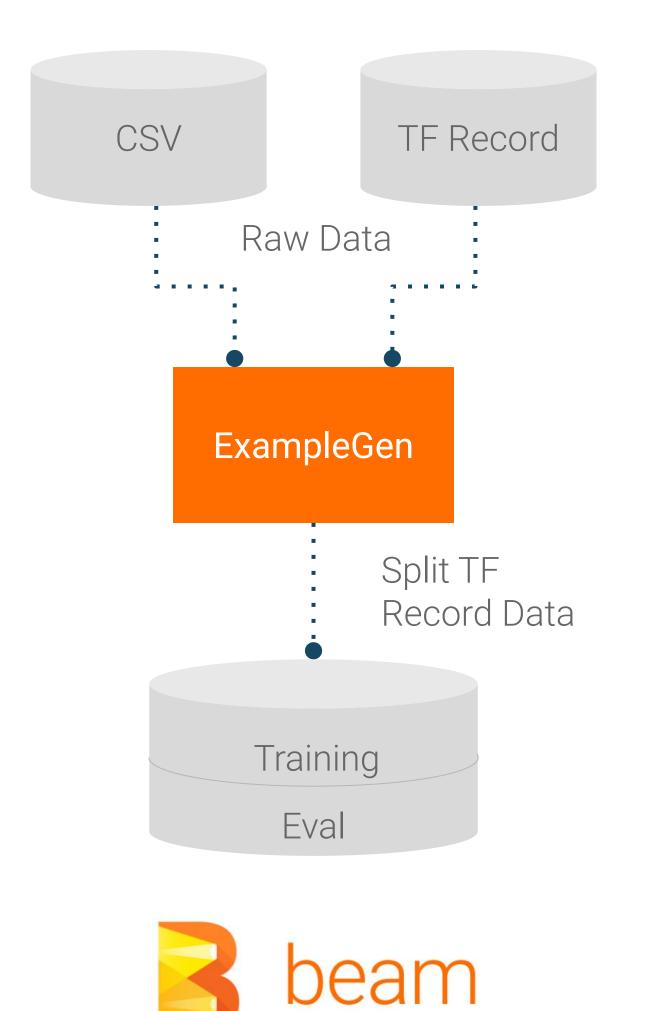
TFX Standard Components

TFX CONFIG

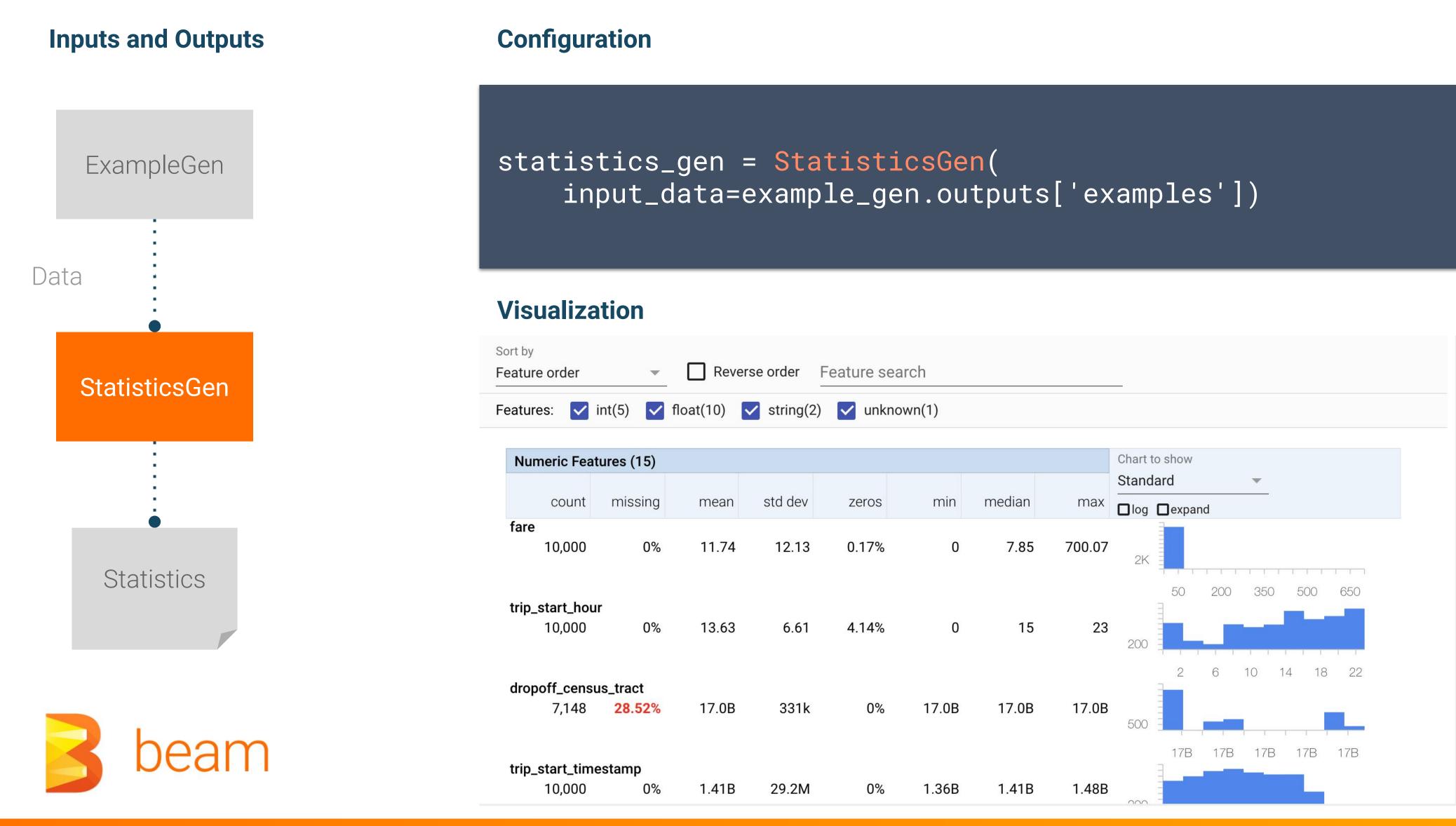


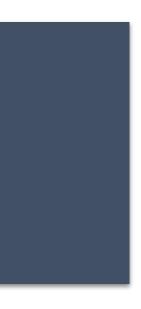
Inputs and Outputs

Configuration



example_gen = CsvExampleGen(input_base=external_input(data_root))

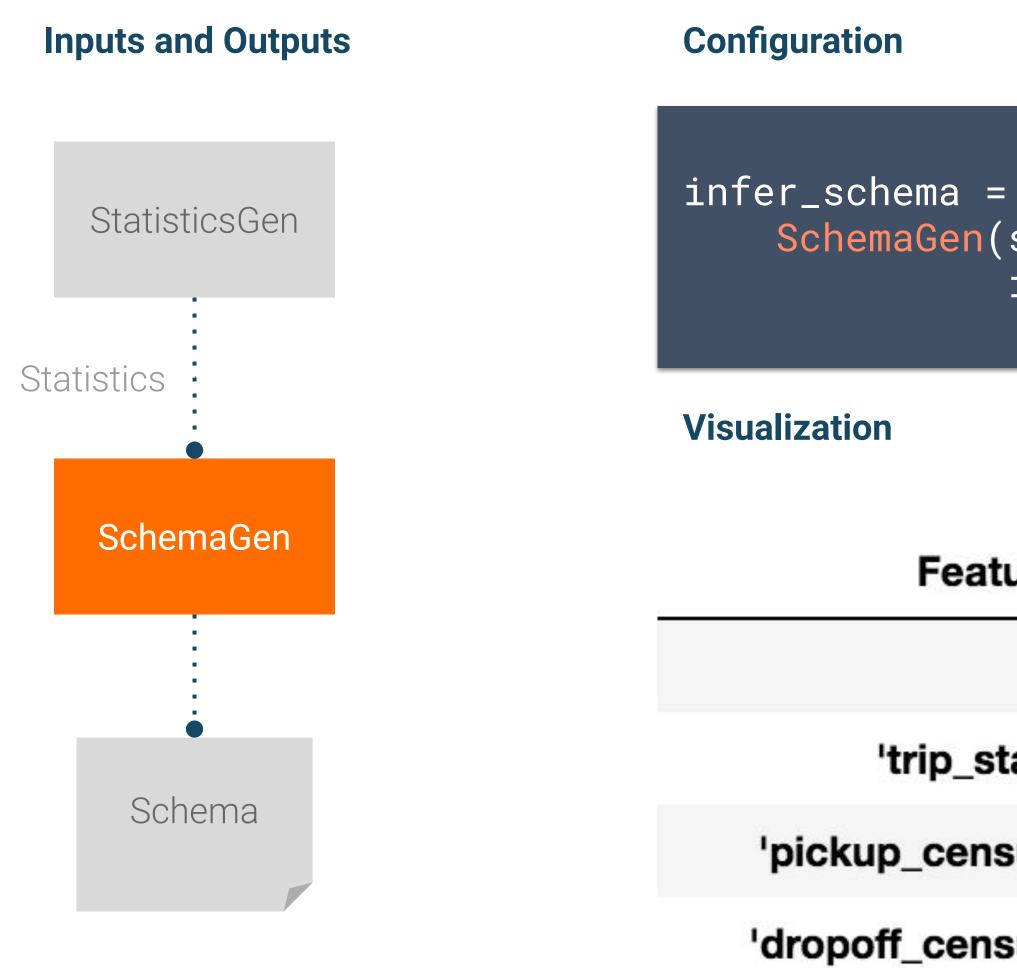




Analyzing Data with TensorFlow Data Validation

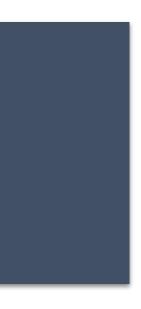
Sort by Feature order Features: Vint(5)		~	Reverse order Feature		Feature se	ear
		int(5) 🔽	float(5)	🗸 variable-	length floats	(5)
Numeric Features (atures (15)				
	count	missing	mean	std dev	zeros	
	fare 5,009	0%	11.97	14.12	0.12%	
	trip_start_ho 5,009	ur 0%	13.51	6.73	4.13%	
	dropoff_cens	sus tract				
	5,009	0%	17.0B	328k	0%	
	trip_start_tin 5,009	nestamp 0%	1.41B	29.0M	0%	
	pickup_longi 5,009	tude 0%	-87.66	0.07	0%	
	trip_start_mo 5,009	onth 0%	6.6	3.4	0%	

Component: SchemaGen



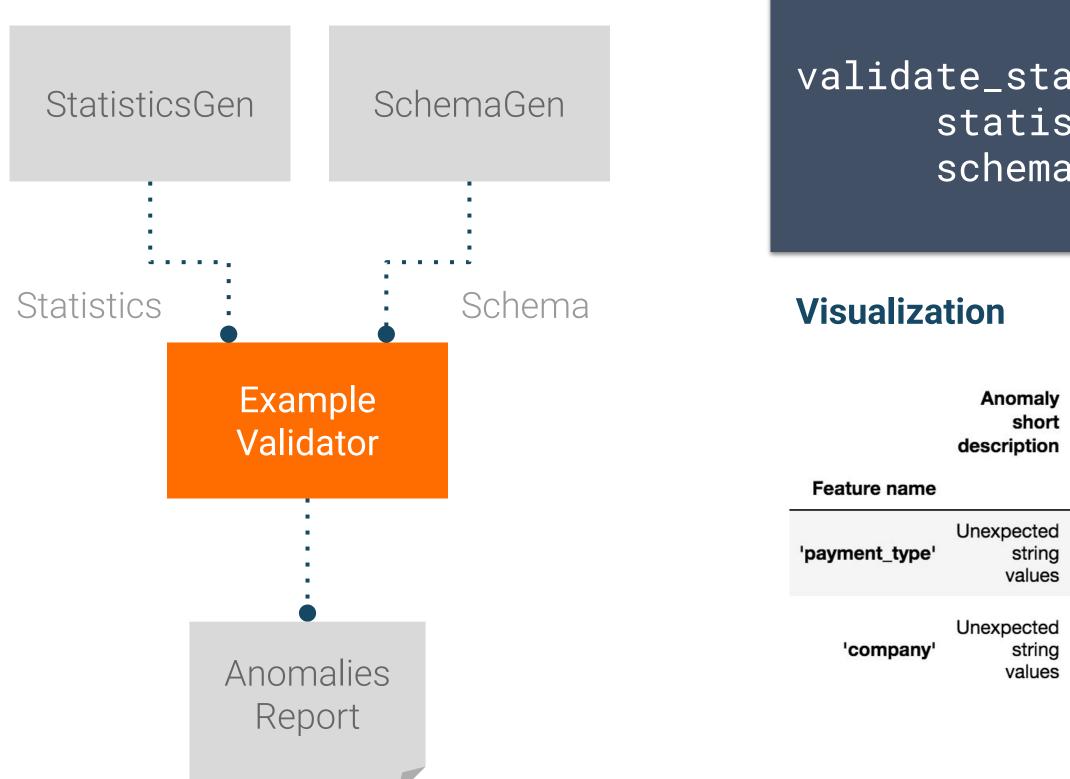
SchemaGen(statistics=statistics_gen.outputs['statistics'], infer_feature_shape=False)

	Туре	Presence	Valency	Domain
eature name				
'fare'	FLOAT	required	single	
o_start_hour'	INT	required	single	
ensus_tract'	BYTES	optional		-
ensus_tract	FLOAT	optional	single	07 4
'company'	STRING	optional	single	'company'



Inputs and Outputs

Configuration

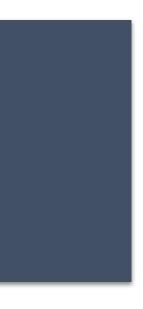


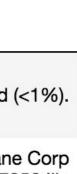
validate_stats = ExampleValidator(statistics=statistics_gen.outputs['statistics'], schema=infer_schema.outputs['schema'])

Anomaly long description

Examples contain values missing from the schema: Prcard (<1%).

Examples contain values missing from the schema: 2092 - 61288 Sbeih company (<1%), 2192 - 73487 Zeymane Corp (<1%), 2192 - Zeymane Corp (<1%), 2823 - 73307 Seung Lee (<1%), 3094 - 24059 G.L.B. Cab Co (<1%), 3319 - CD Cab Co (<1%), 3385 - Eman Cab (<1%), 3897 - 57856 Ilie Malec (<1%), 4053 - 40193 Adwar H. Nikola (<1%), 4197 - Royal Star (<1%), 585 - 88805 Valley Cab Co (<1%), 5874 - Sergey Cab Corp. (<1%), 6057 - 24657 Richard Addo (<1%), 6574 - Babylon Express Inc. (<1%), 6742 - 83735 Tasha ride inc (<1%).

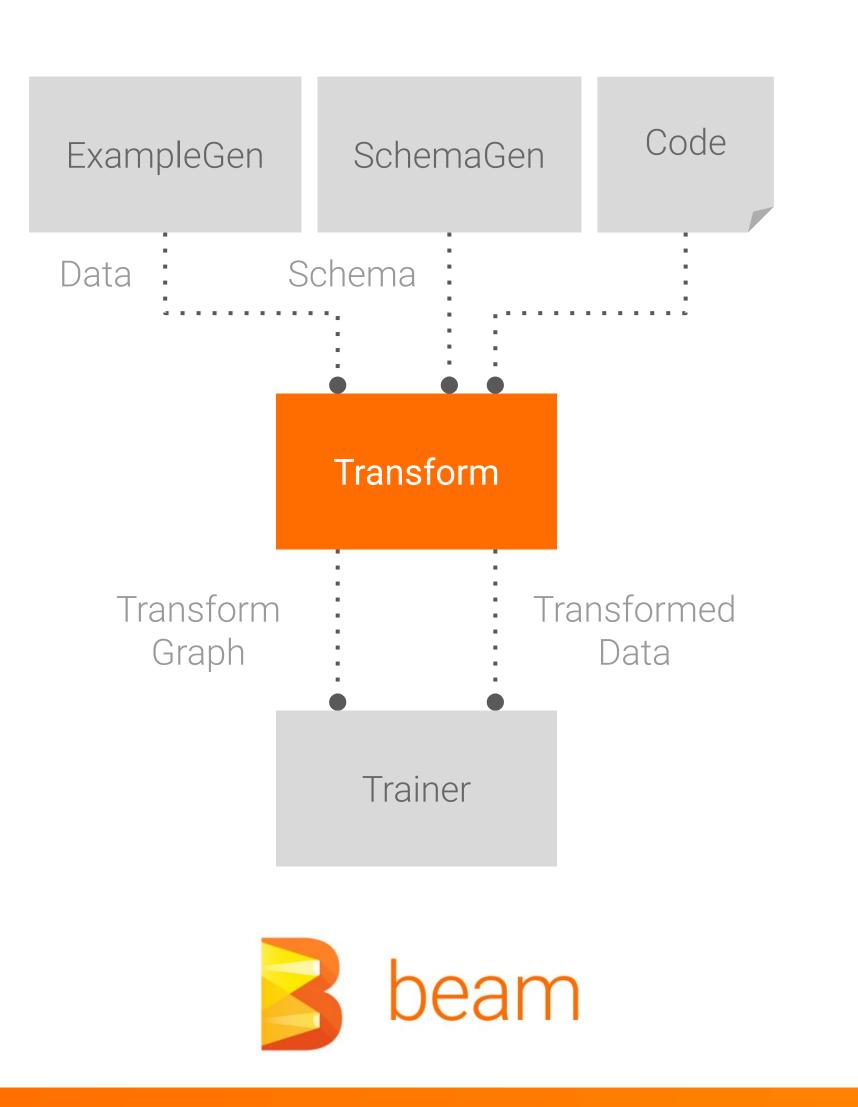




Component: Transform

Inputs and Outputs

Configuration



Code

```
tf.cast(
```

...

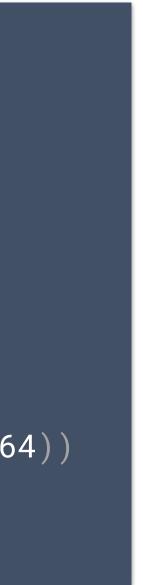
...

transform = Transform(examples=example_gen.outputs['output_data'], schema=infer_schema.outputs['schema'], module_file=module_file)

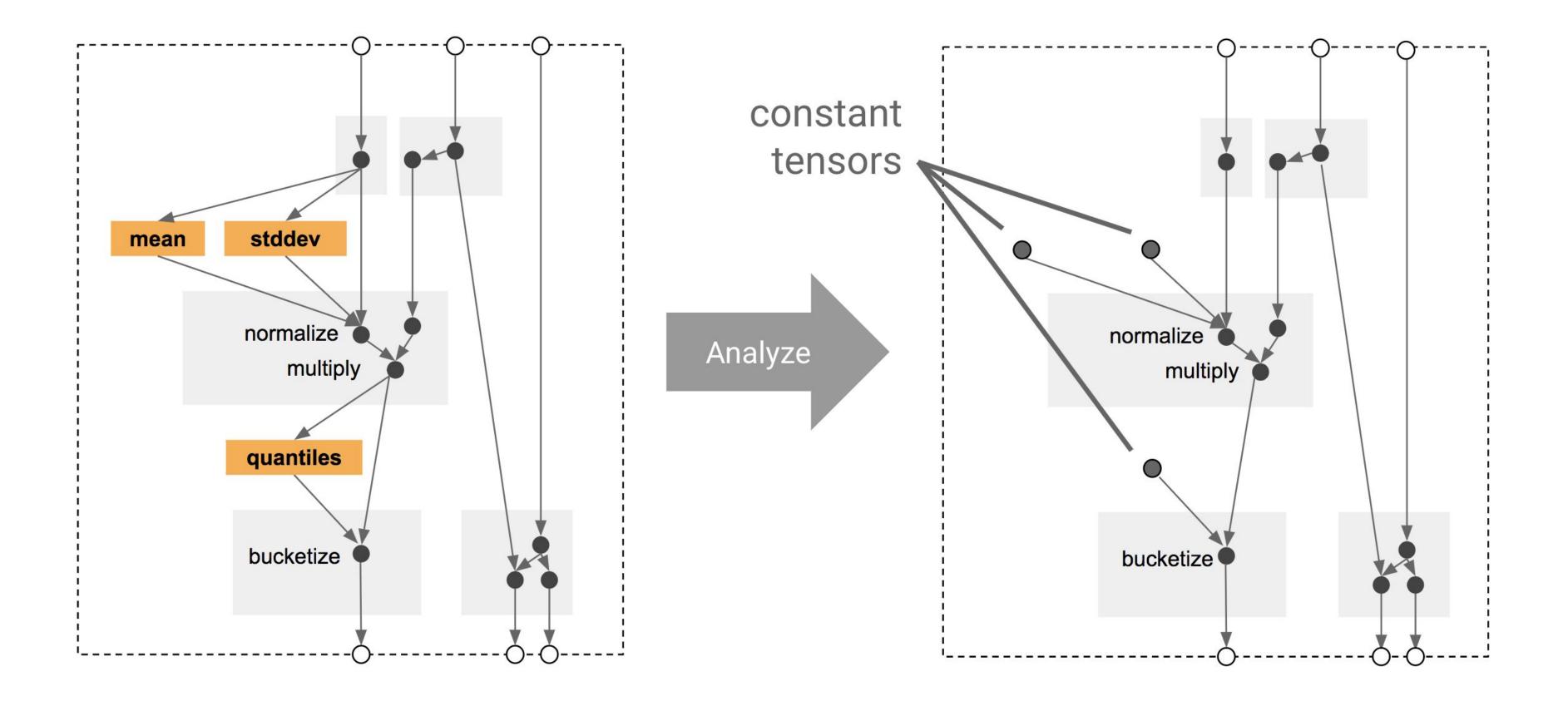
```
for key in _DENSE_FLOAT_FEATURE_KEYS:
   outputs[_transformed_name(key)] = transform.scale_to_z_score(
       _fill_in_missing(inputs[key]))
```

```
outputs[_transformed_name(_LABEL_KEY)] = tf.where(
      tf.is_nan(taxi_fare),
      tf.cast(tf.zeros_like(taxi_fare), tf.int64),
      # Test if the tip was > 20\% of the fare.
```

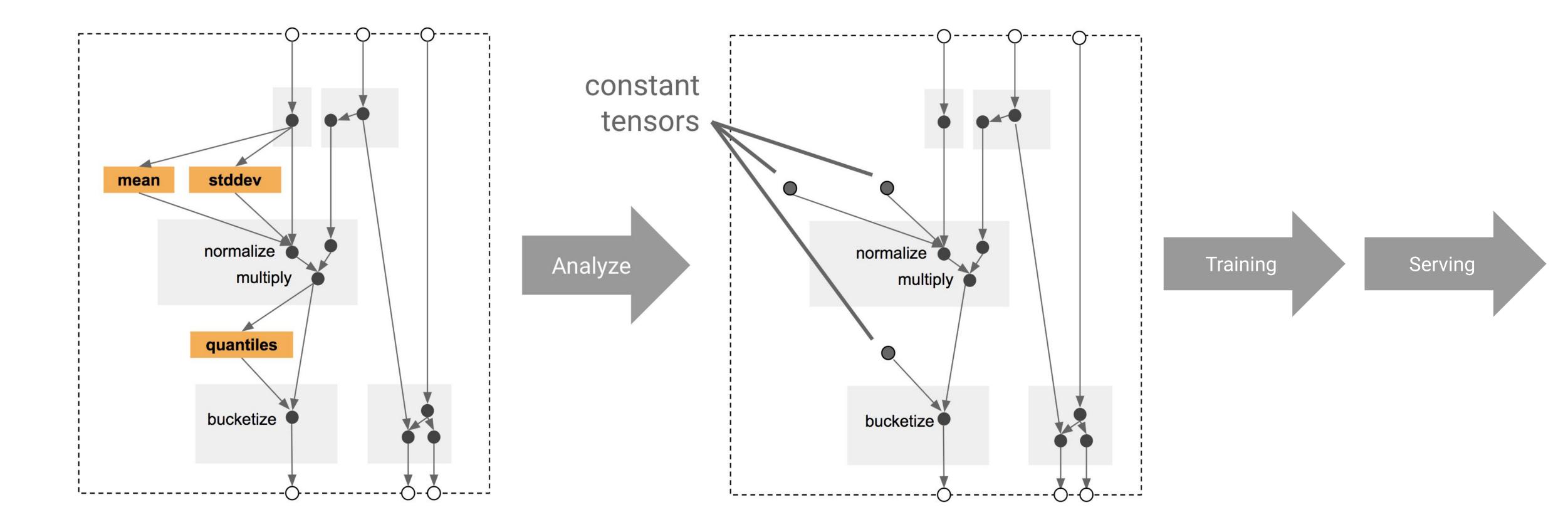
tf.greater(tips, tf.multiply(taxi_fare, tf.constant(0.2))), tf.int64))



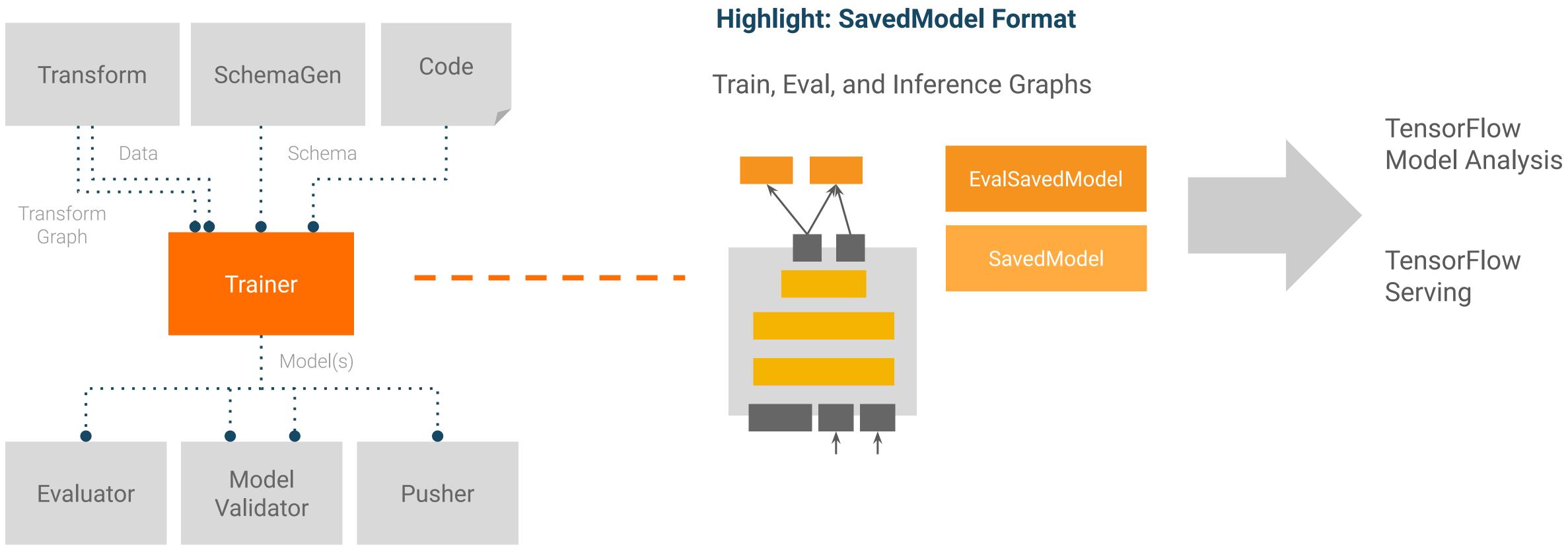
Using TensorFlow Transform for Feature Engineering



Using TensorFlow Transform for Feature Engineering



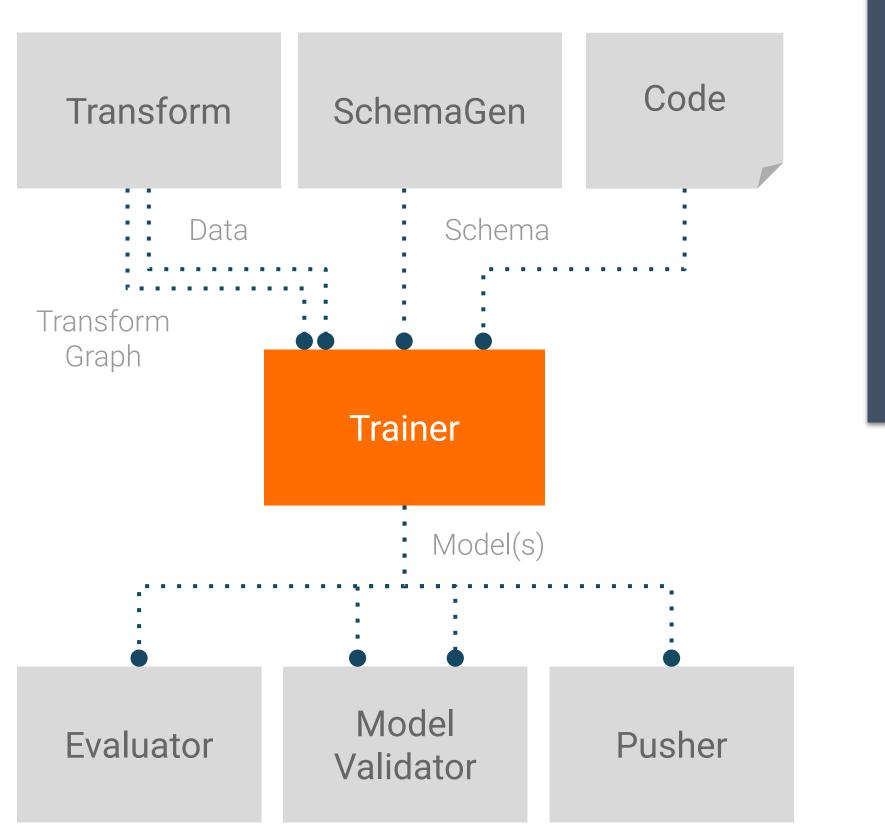
Inputs and Outputs

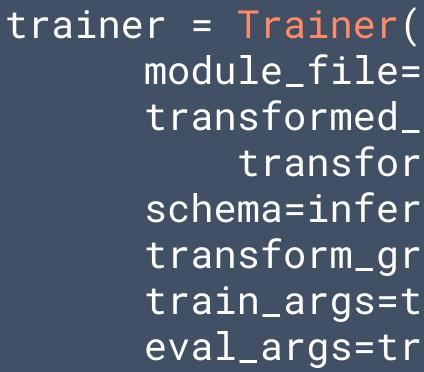


Component: Trainer

Inputs and Outputs

Configuration

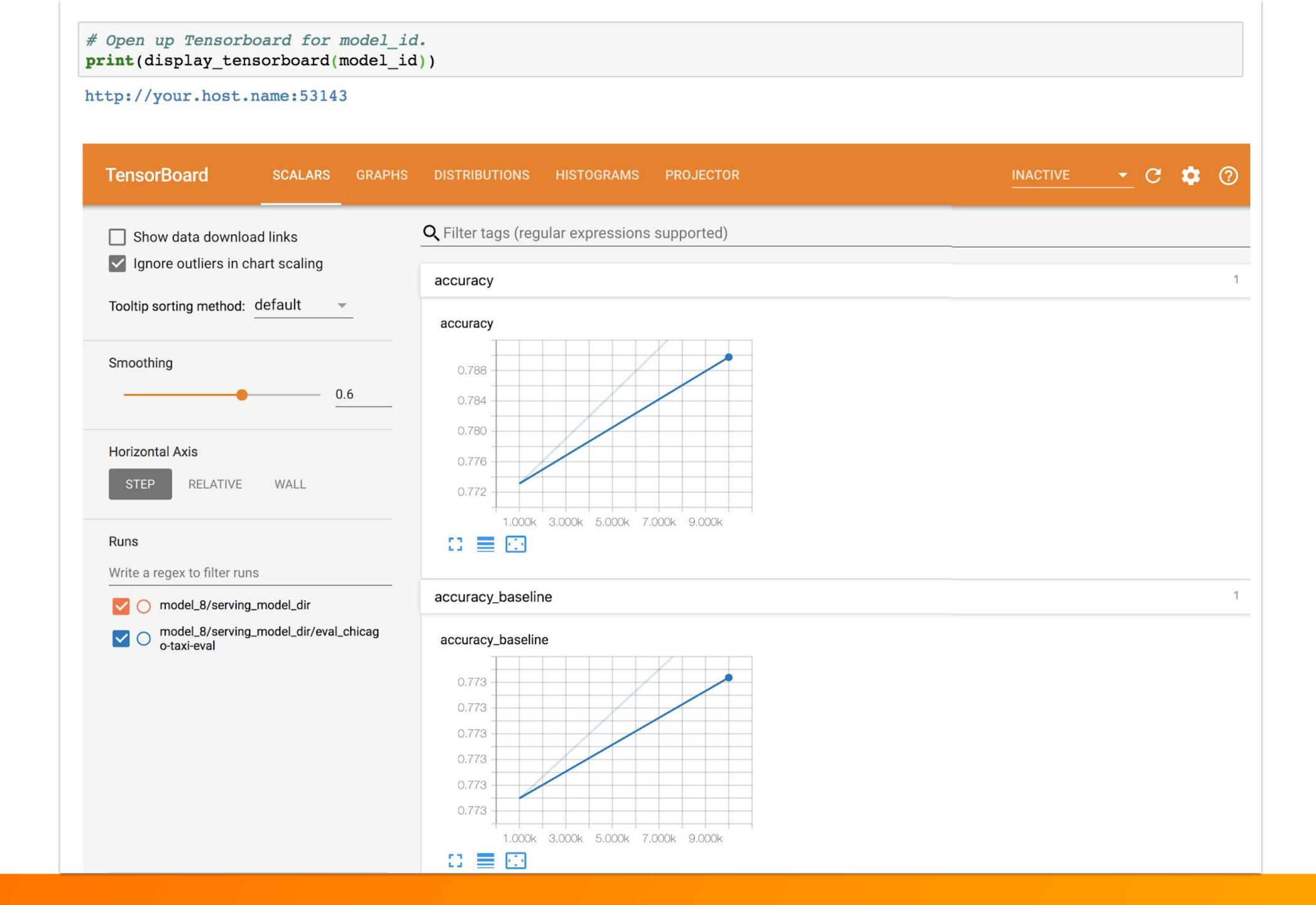


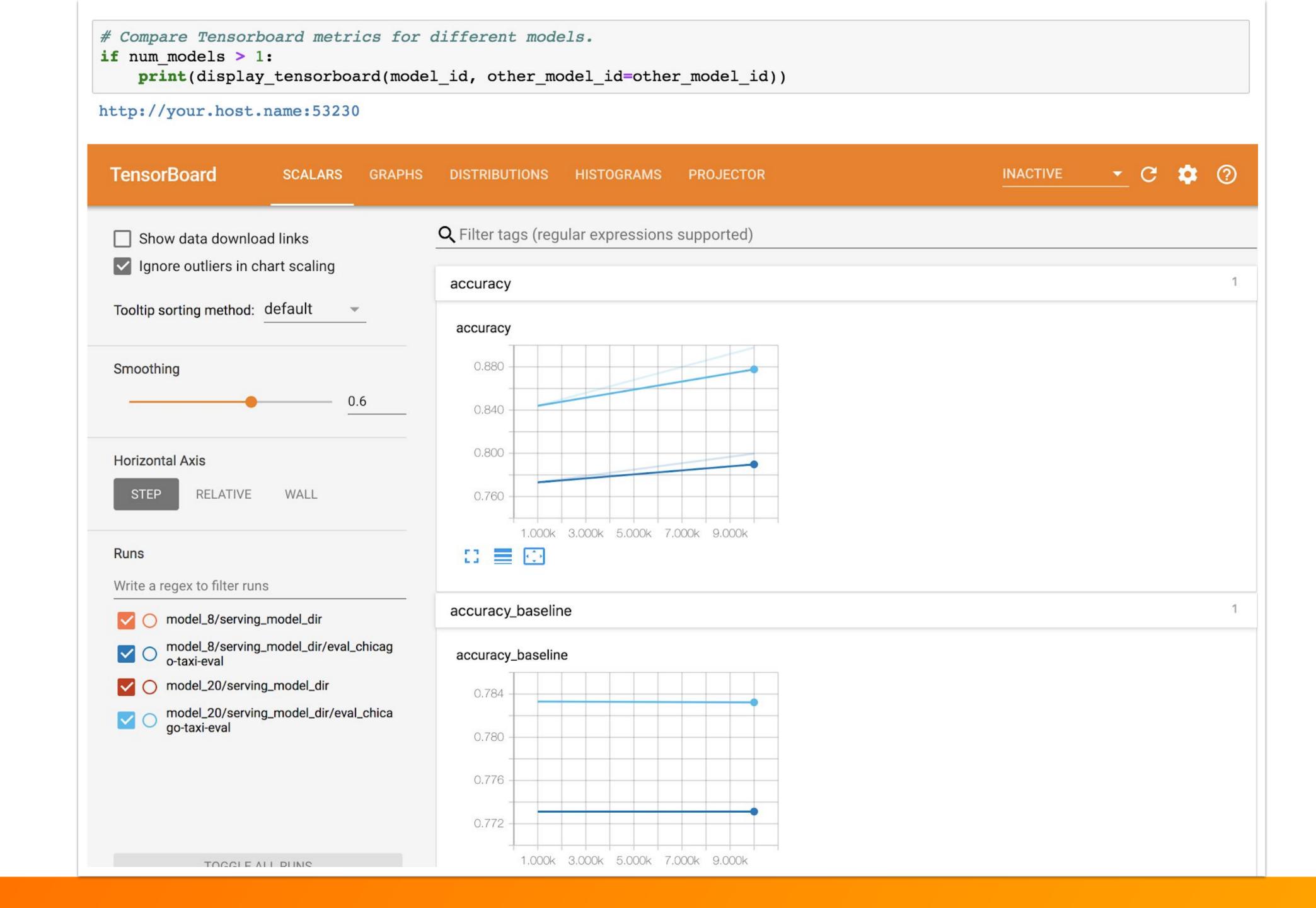


Code

Just TensorFlow :)

module_file=module_file, transformed_examples= transform.outputs['transformed_examples'], schema=infer_schema.outputs['schema'], transform_graph=transform.outputs['transform_graph'], train_args=trainer_pb2.TrainArgs(num_steps=10000), eval_args=trainer_pb2.EvalArgs(num_steps=5000))





Inputs and Outputs

ExampleGen Trainer Data Model Evaluator Evaluation **Metrics** beam

Configuration

Visualization



trip_sta trip_star trip_sta trip_star trip_sta trip_star

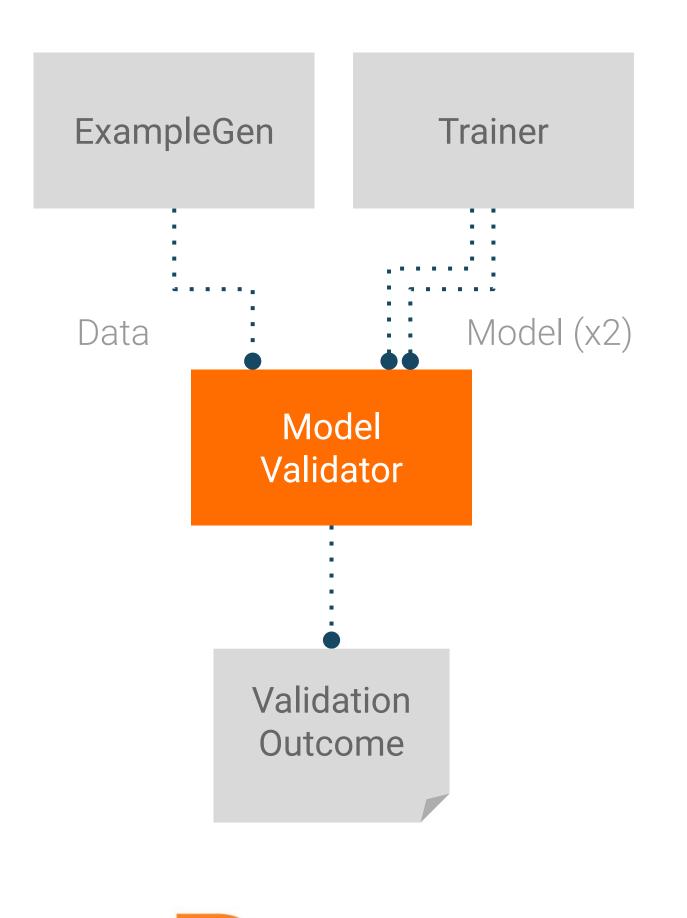
model_analyzer = Evaluator(examples=example_gen.outputs['output_data'], model=trainer.outputs['model'], feature_slicing_spec=evaluator_pb2.FeatureSlicingSpec(specs=[evaluator_pb2.SingleSlicingSpec(column_for_slicing=['trip_start_hour'])]))

ature	accuracy	accuracy_baseline	auc	auc_precision_recall	average_loss
art_hour:19	0.63582	0.59104	0.64311	0.56092	0.64626
art_hour:14	0.67117	0.65766	0.63793	0.49112	0.61667
tart_hour:2	0.66102	0.63559	0.58527	0.47002	0.65236
art_hour:12	0.69643	0.65625	0.68270	0.54122	0.59538
tart_hour:0	0.66184	0.66667	0.63773	0.45081	0.61634
art_hour:23	0.65625	0.64844	0.58357	0.43514	0.64315

Component: ModelValidator

Inputs and Outputs

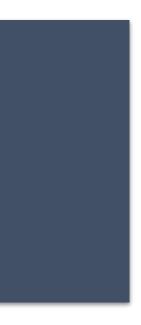
Configuration



model_validator = ModelValidator(examples=example_gen.outputs['output_data'], model=trainer.outputs['model'])

Configuration Options

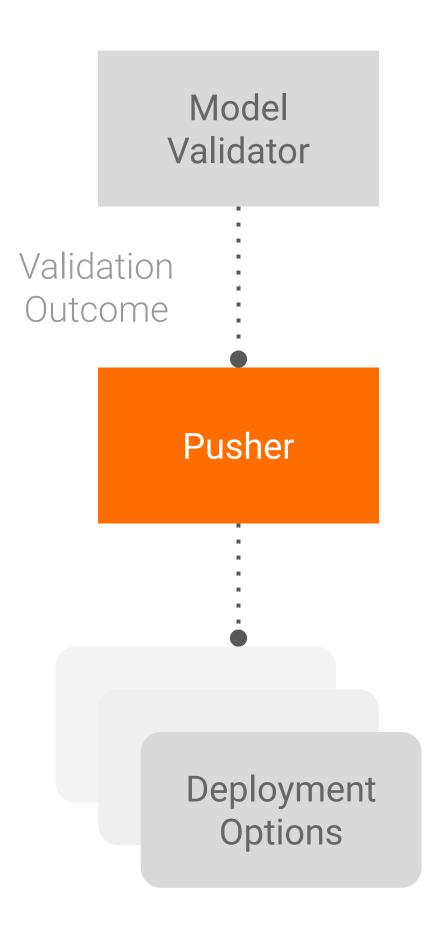
• Validate using current eval data • "Next-day eval", validate using unseen data



Component: Pusher

Inputs and Outputs

Configuration



pusher = Pusher(

- Push destinations supported today • Filesystem (TensorFlow Lite, TensorFlow JS) • TensorFlow Serving

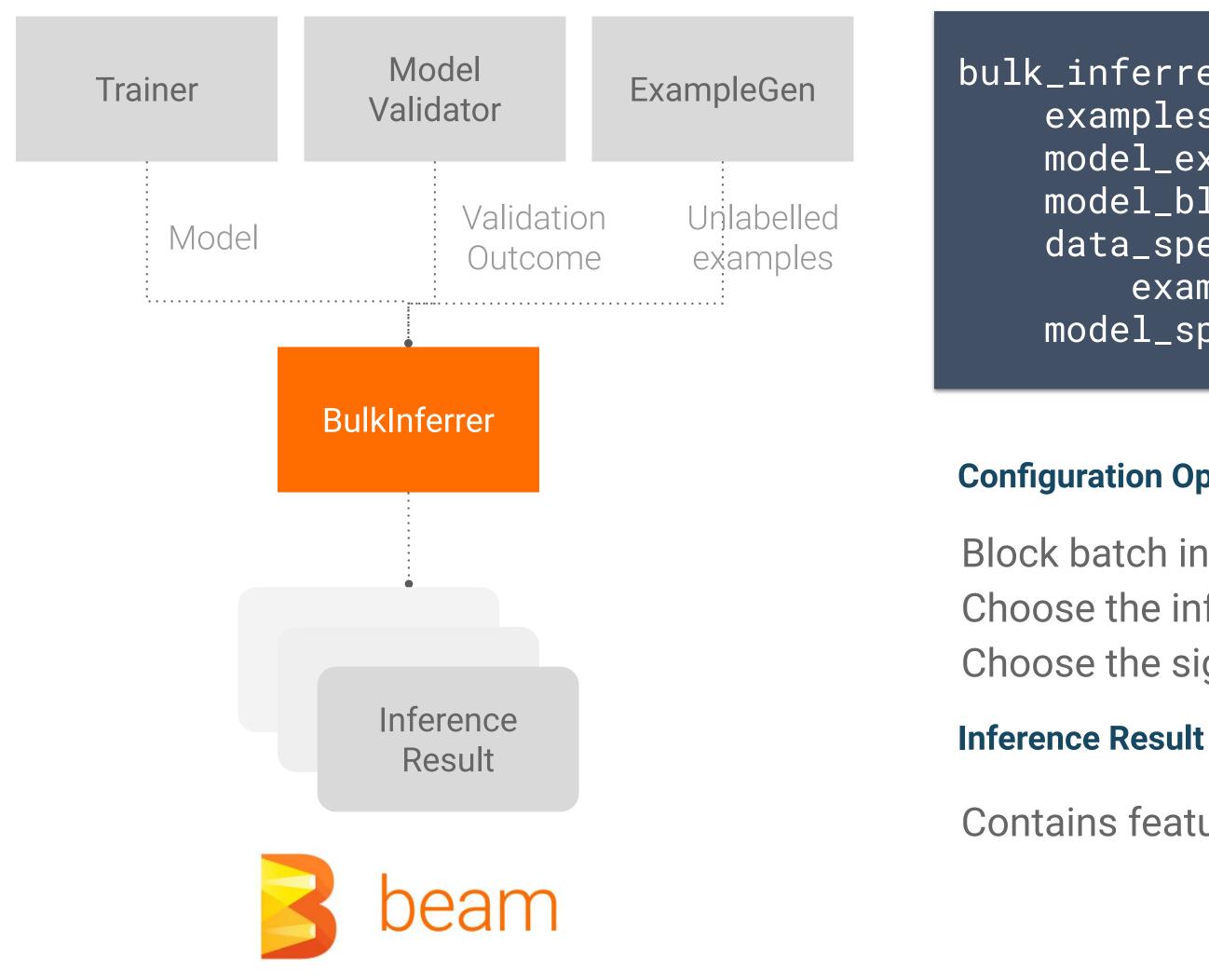
model=trainer.outputs['model'], model_blessing=model_validator.outputs['blessing'], push_destination=pusher_pb2.PushDestination(filesystem=pusher_pb2.PushDestination.Filesystem(base_directory=serving_model_dir)))

Block push on validation outcome

Component: BulkInferrer

Inputs and Outputs

Configuration

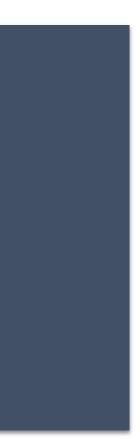


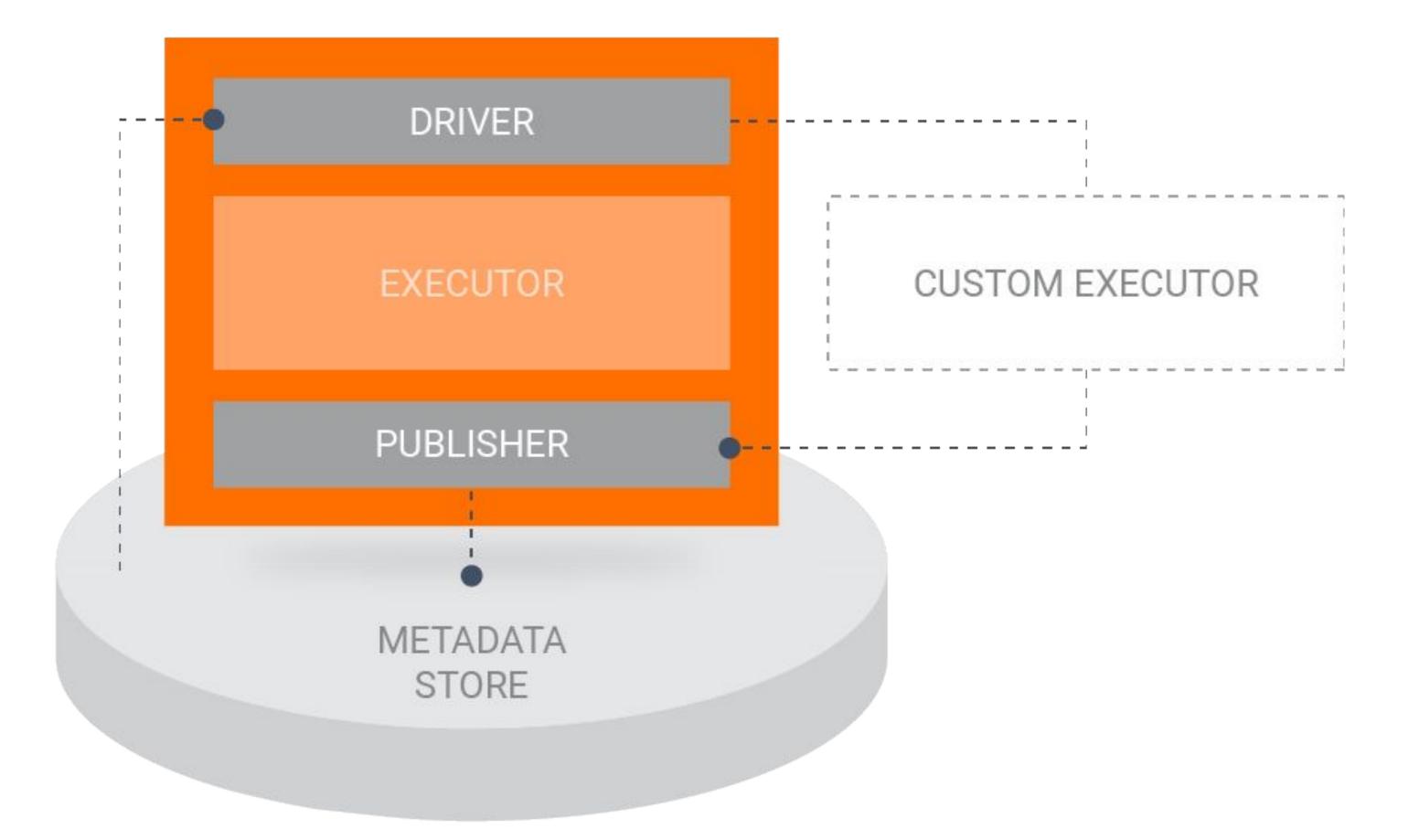
```
bulk_inferrer = BulkInferrer(
    examples=inference_example_gen.outputs['examples'],
    model_export=trainer.outputs['output'],
    model_blessing=model_validator.outputs['blessing'],
    data_spec=bulk_inferrer_pb2.DataSpec(
        example_splits=['unlabelled']),
    model_spec=bulk_inferrer_pb2.ModelSpec())
```

Configuration Options

- Block batch inference on a successful model validation.
- Choose the inference examples from example gen's output.
- Choose the signatures and tags of inference model.

Contains features and predictions.





Extend the existing components

Replace the default component executor with your own code, providing the ability to extend existing components with your own implementation.

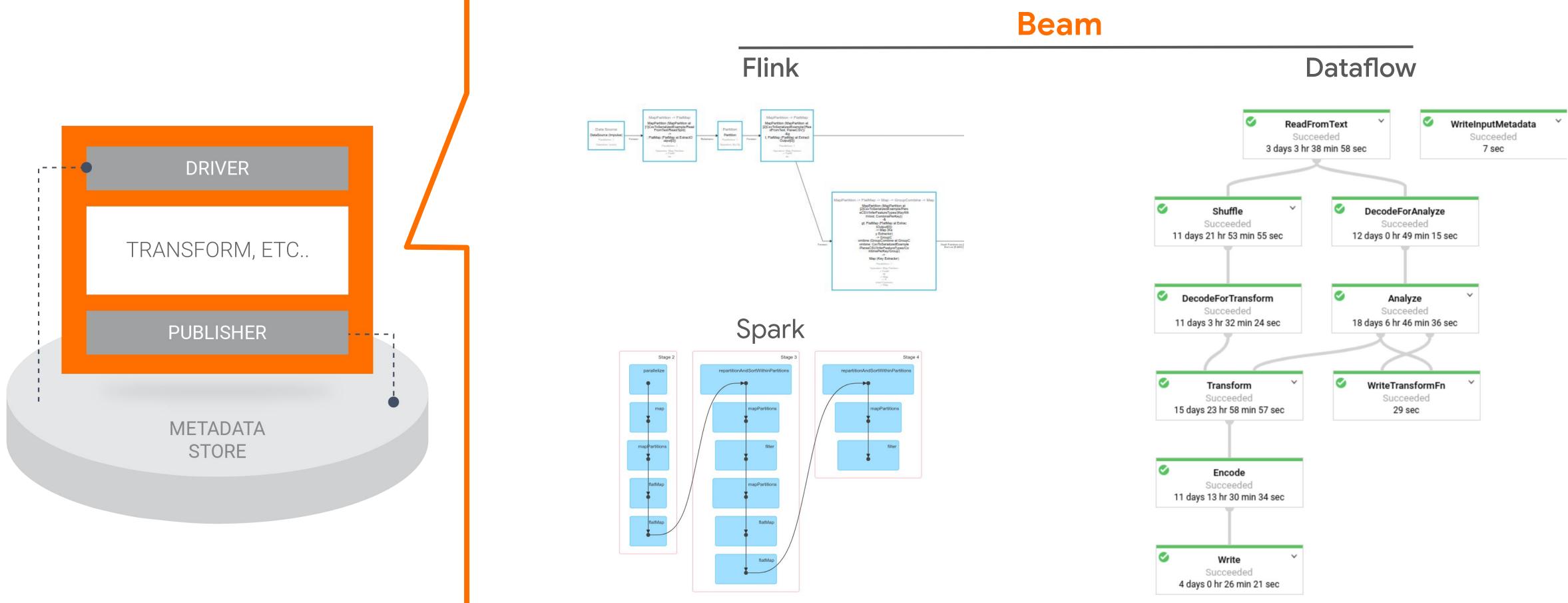
Semi-Custom Component: Overriding with your own executor

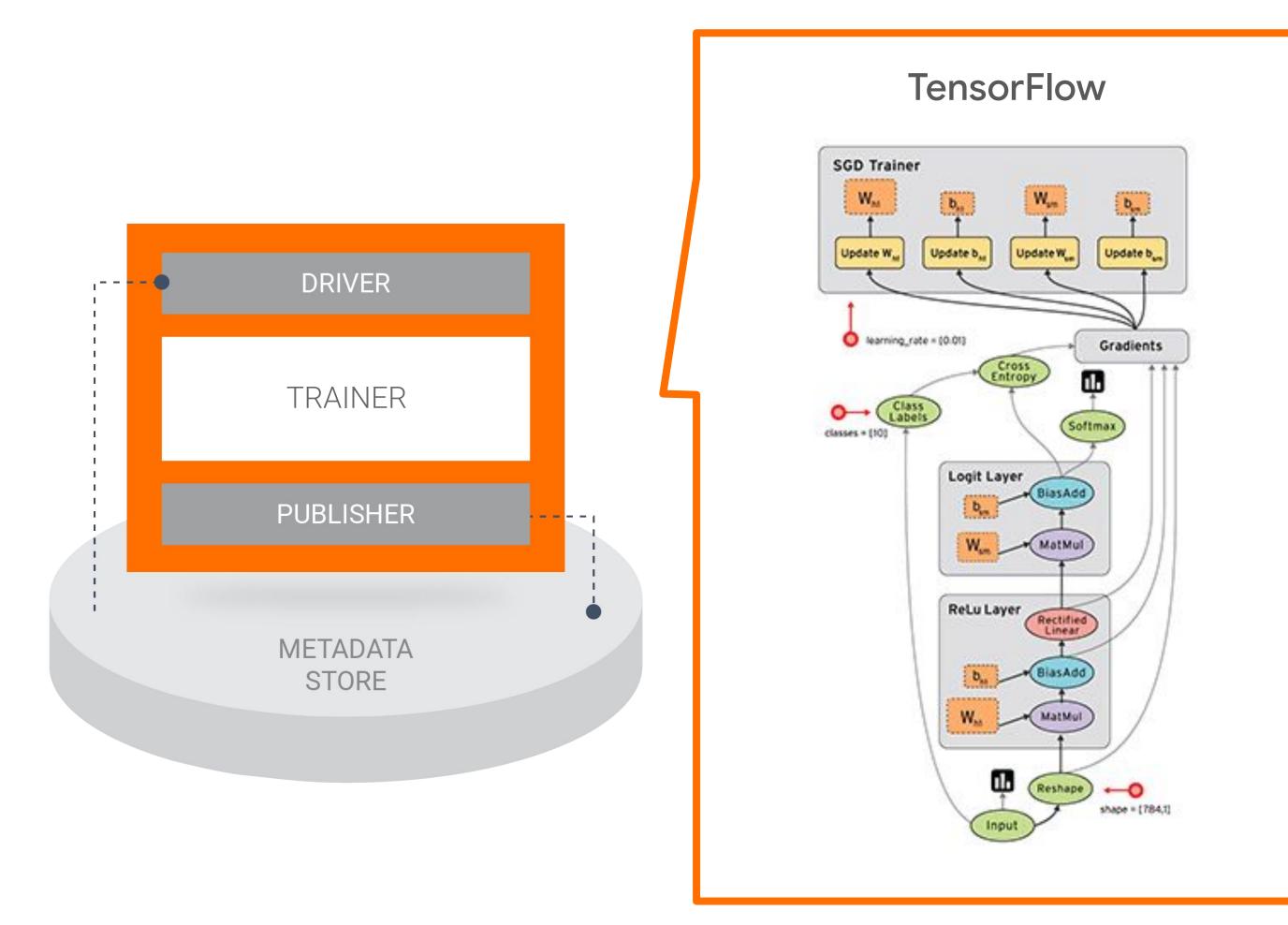
- Start with an existing component
- Extend BaseExecutor and implement Do()
- Add your custom code into the Do() method
- Use custom config parameters to add inputs to the custom executor

class Executor(base_executor.BaseExecutor):

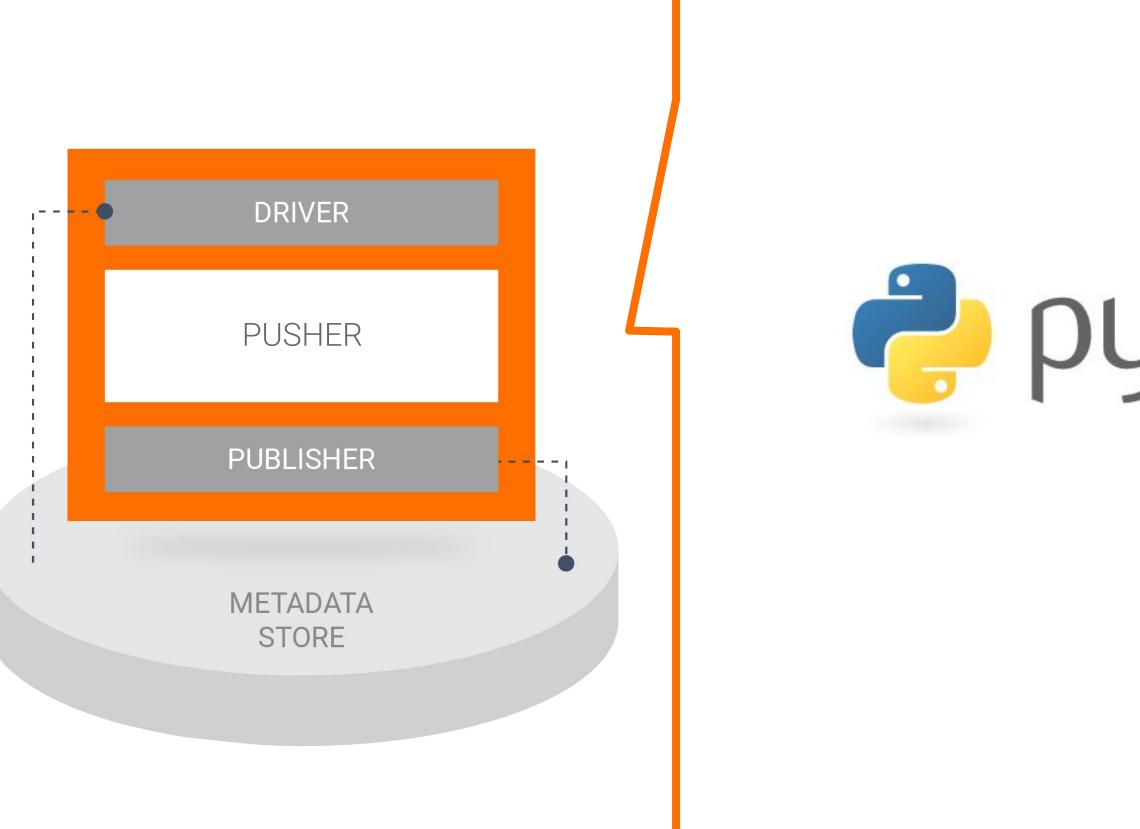
def Do(self, input_dict, output_dict, exec_properties):

Executors do the work

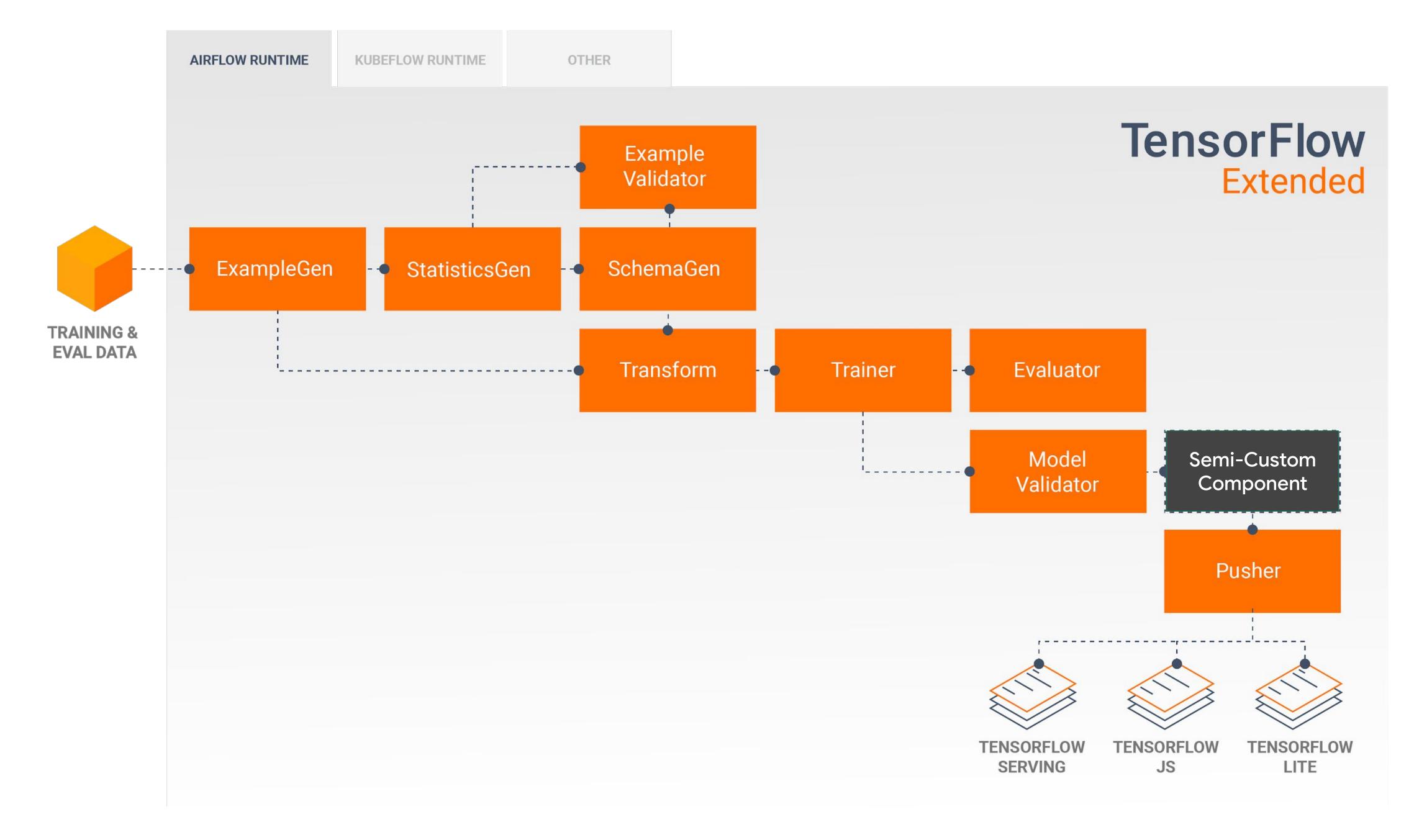


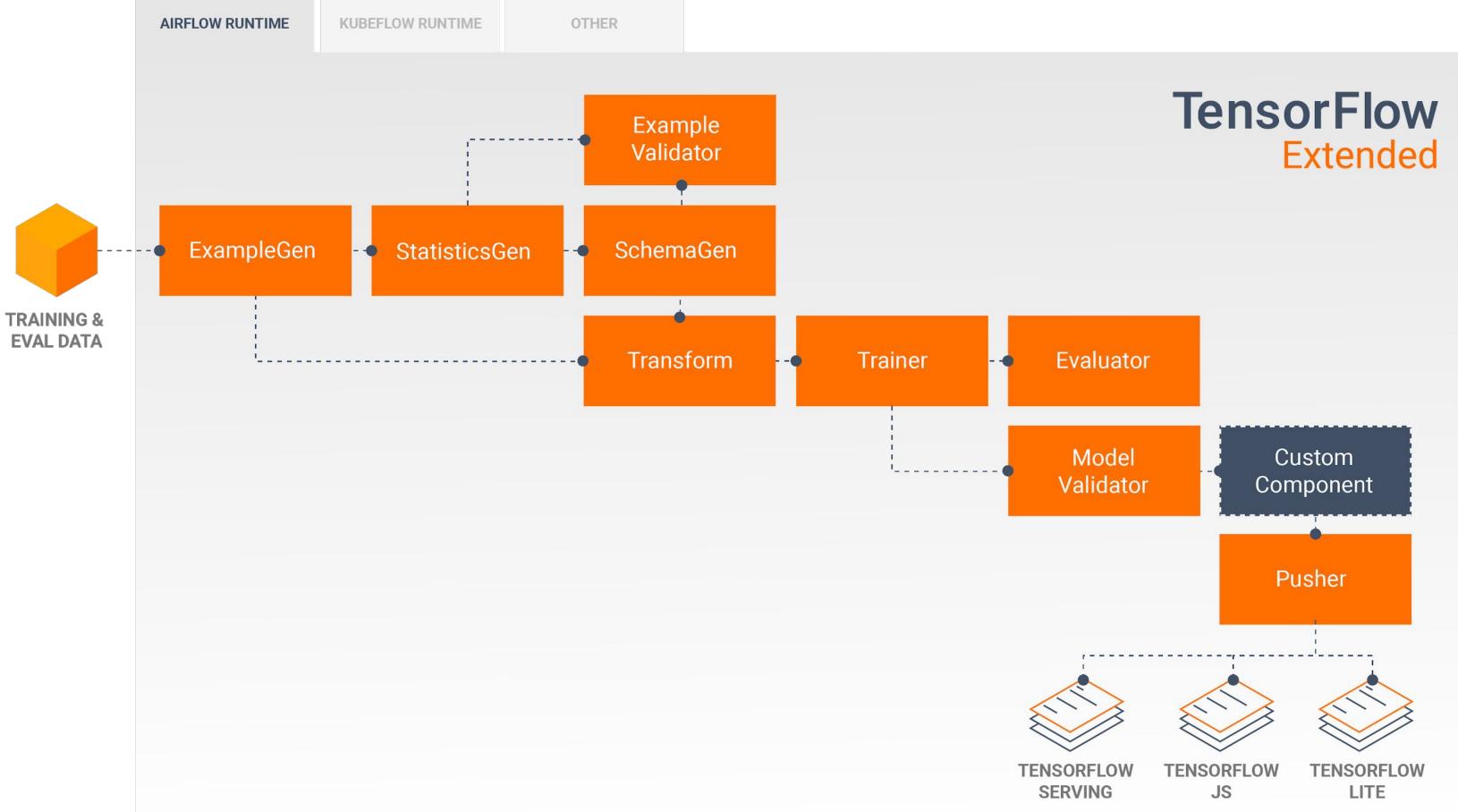


Executors do the work



python™





Build your own component

Create your own components to run within a TFX pipeline while still providing the benefits of metadata management, lineage, and pipeline monitoring.

Custom Component: New Component Inputs & Outputs

Use **ComponentSpec** to define the new inputs and outputs

- **INPUTS**: Input artifacts that will be passed into the executor
- **OUTPUTS**: Output artifacts which the executor will produce
- **PARAMETERS**: Additional properties required by the executor. These are non-artifact parameters defined in the pipeline DSL and passed into execution.

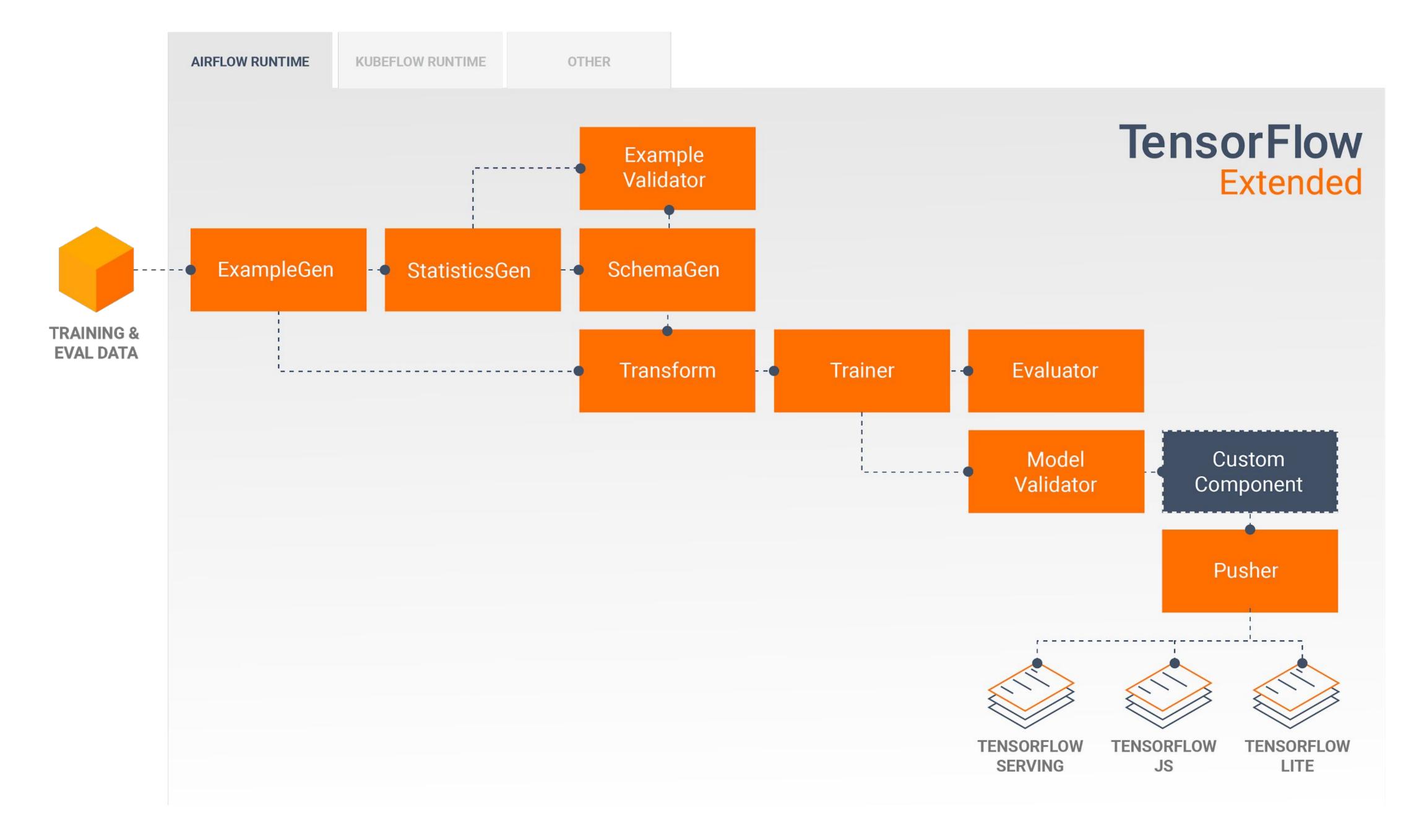
```
class MyComponentSpec(types.ComponentSpec):
```

```
PARAMETERS = {
  'timeout sec': ExecutionParameter(type=int),
INPUTS = {
 'model_export': ChannelParameter(type_name='ModelExportPath'),
OUTPUTS = {
 'MyBlessing': ChannelParameter(type_name='ModelBlessingPath'),
```


Custom Component: Your Executor, Inputs, Outputs, and Params

Same as when just doing a custom executor, but with the custom inputs and outputs defined in your custom ComponentSpec

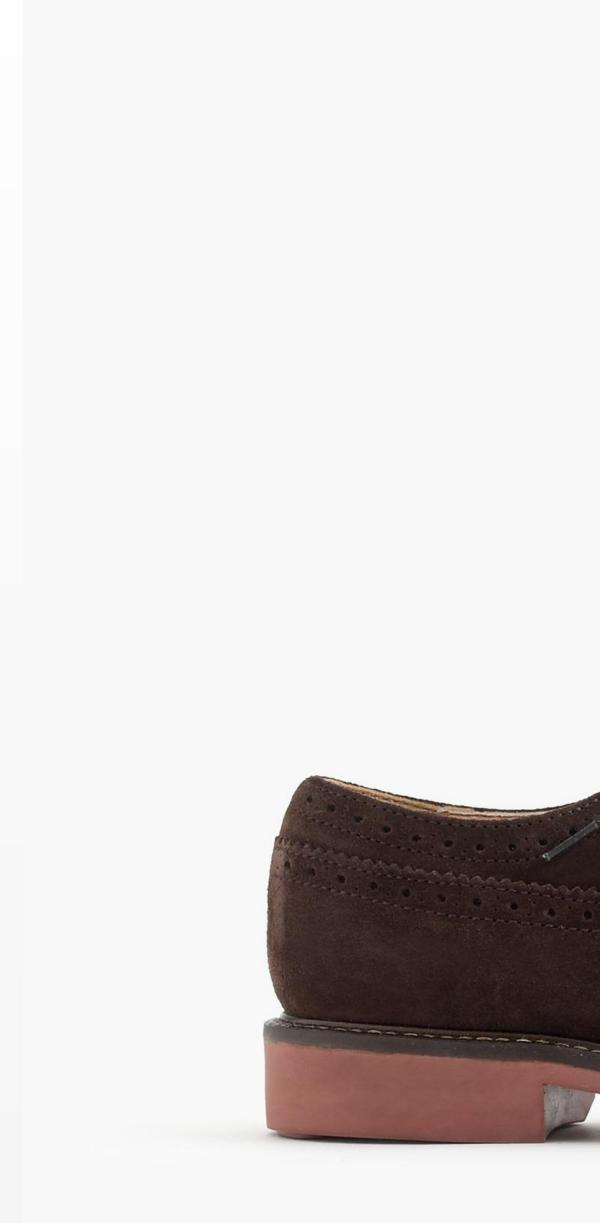
class Executor(base_executor.BaseExecutor):
 """Start a trainer job on Google Cloud AI Platform."""

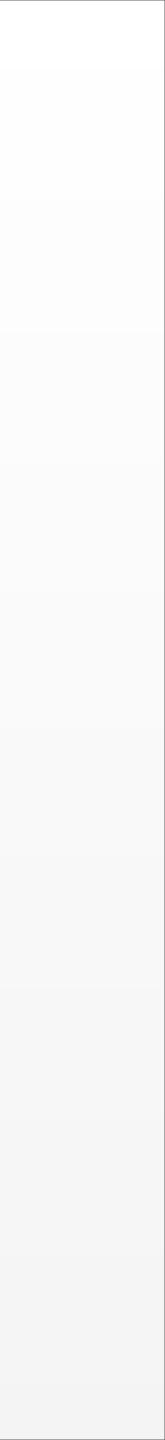


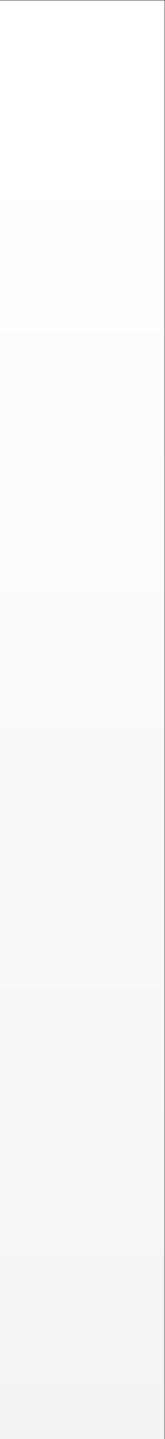
... back to the shoes

You're an Online Retailer Selling Shoes ...

Your model predicts click-through rates (CTR), helping you decide how much inventory to order





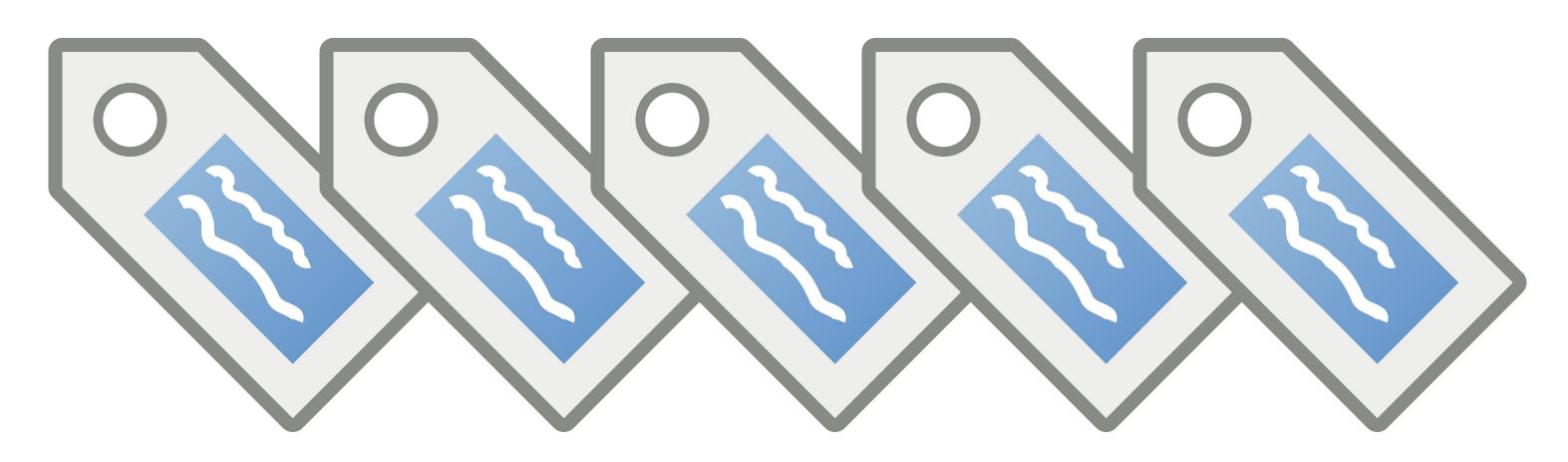


Detecting Problems With Deployed Models

- Problems are with current inference results
 - Example data will be from current inference requests
 - Not your training data
- Monitor to find problems early

Detecting Problems With Deployed Models

- To measure model performance, you need labels
 - Process feedback Example: Actual versus predicted click-through
 - Semi-supervision Human labeling Expensive, limited
 - Weak supervision Historical data, heuristics, comparison to other models



First Things First

Check your data with the ExampleValidator component and the tools in TensorFlow Data Validation:

- No outliers
- No missing features
- Minimal distribution shift

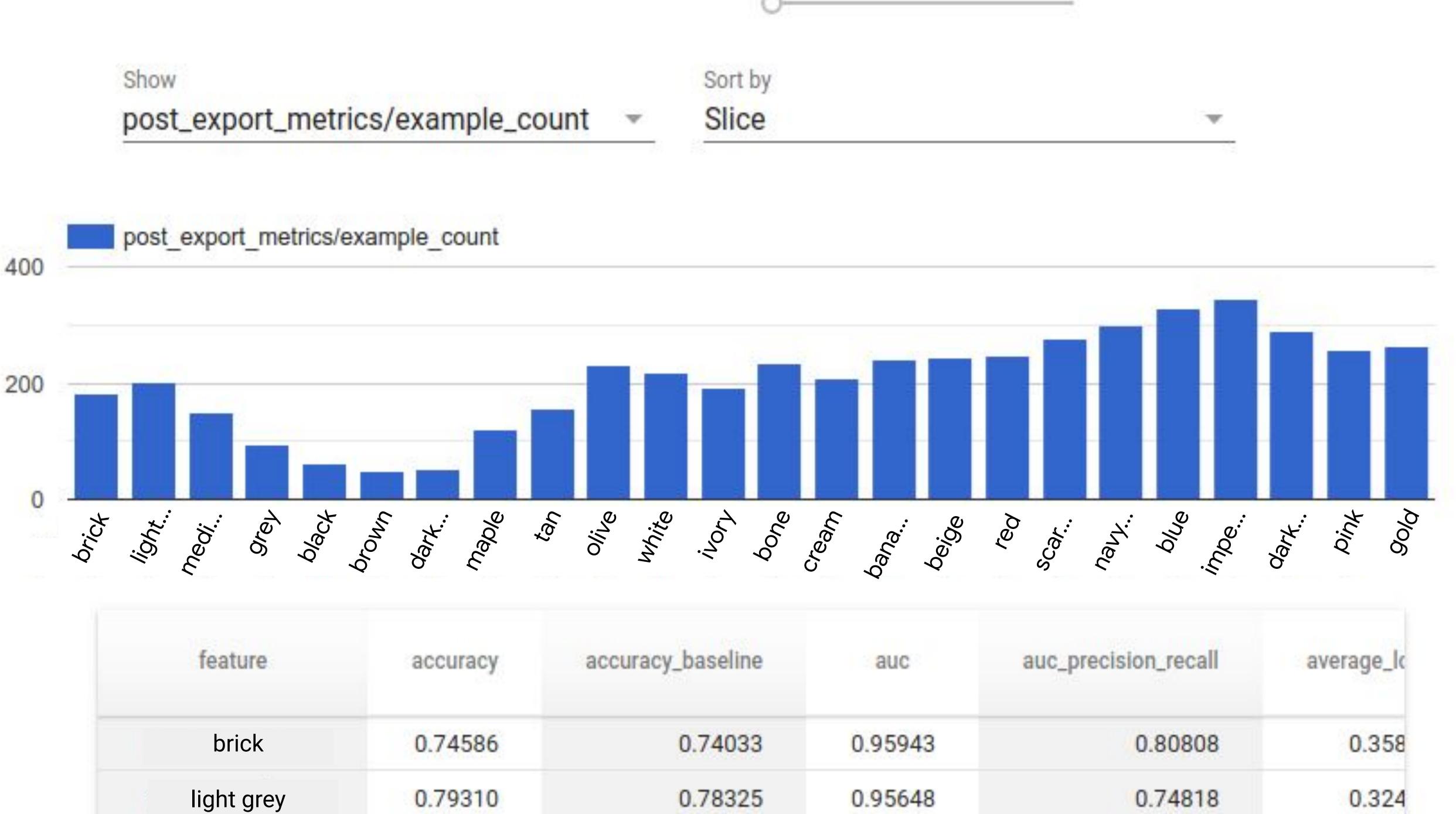
Feature order		•	Reverse order	Feature search	
---------------	--	---	---------------	----------------	--

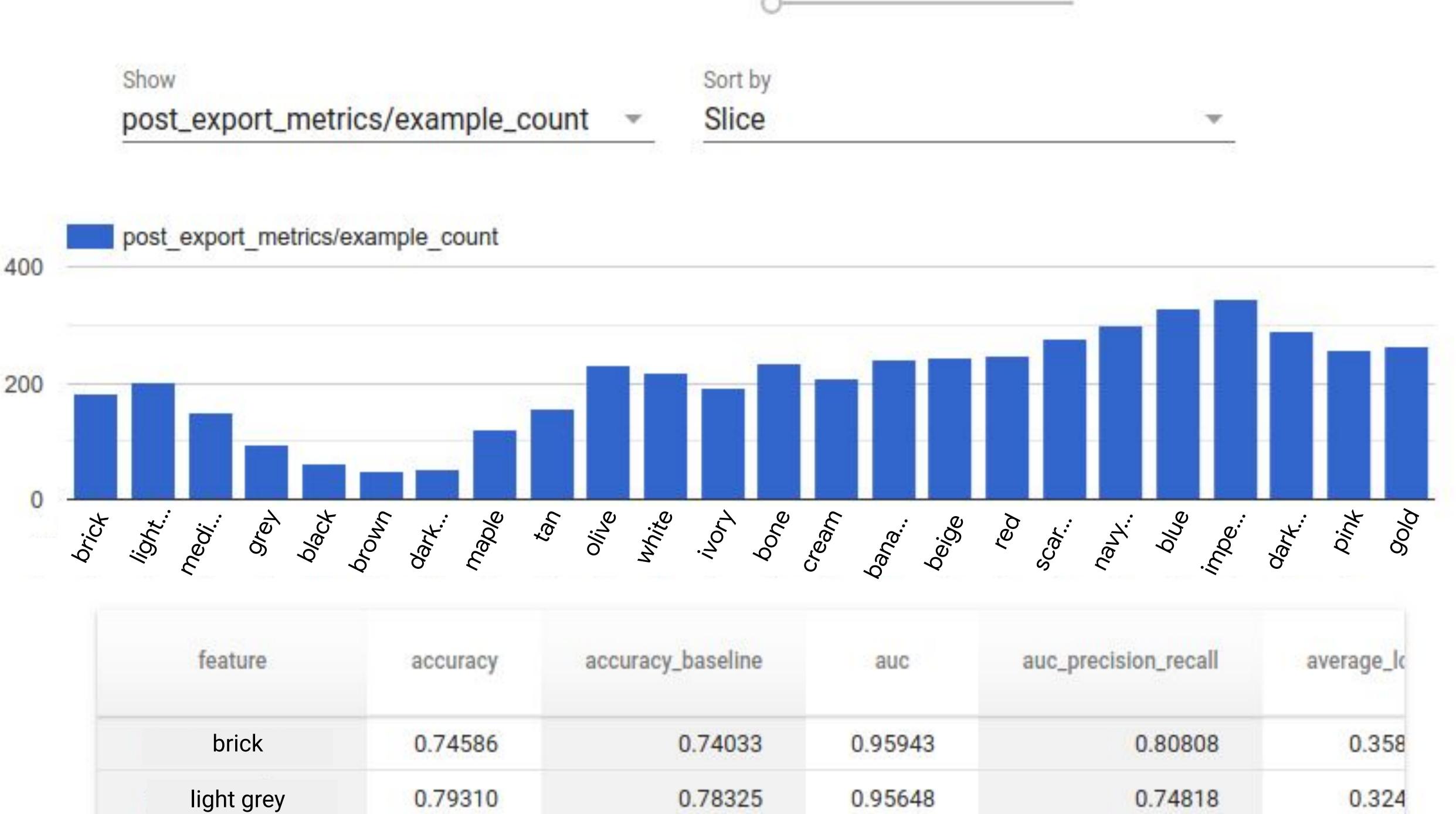
Numeric Feat	tures (15)							Chart to show	
count	missing	mean	std dev	zeros	min	median	max	Standard	and
price 10,000	0%	11.74	12.13	0.17%	0	7.85	700.07	2K	
shoe_size 10,000	0%	13.63	6.61	4.14%	0	15	23	200	200 350

Analyze your model performance

Check your current model performance with current data

- Define slices for your domain like Men's Dress Shoes
- Create labeled dataset from current inference requests
- Use the Evaluator component and the tools in TensorFlow Model Analysis
- If necessary, retrain your model

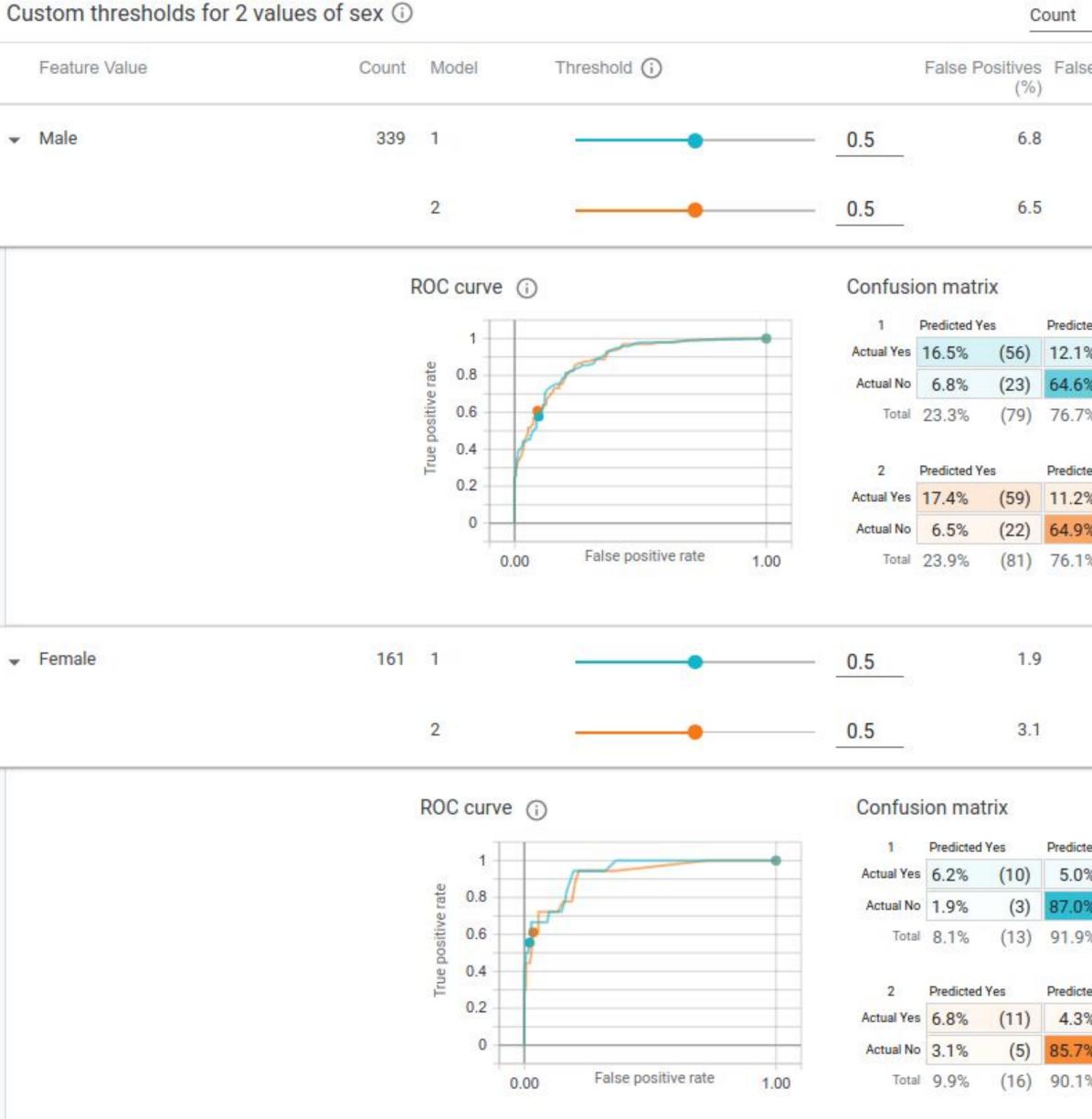




feature	accuracy	accuracy
brick	0.74586	
light grey	0.79310	

Feature Space Coverage

- Identify regions in feature space where data coverage is sparse
- Collect more examples in sparse regions, if possible!
- Carefully add features to help create distinctions you'd like the model to make



		Ŧ	\$	*	
e N	legative (%	es Ac	curacy ((%)	
	355		12	1	
	12	.1	8	1. <mark>1</mark>	
	11	.2	8	2.3	
ed N	lo	Total			
%	(41)	28.6%	(97)		
6	(219)	71.4%	(242)		
%	(260)				
ed N		Total	1000		
6	(38)				
		71.4%	(242)		
6	(258)				
	5	.0	0	3.2	
		.0	2	0.2	
	4	.3	92.5		
ed N	lo	Total			
6	(8)	11.2%	(18)		
6	(140)	88.8%	(143)		
%	(148)				
ed N	lo	Total			
6 76		11.2%	(18)		
2253		88.8%			
	(145)	00.010	(110)		
0	(140)				

Sort by

Explore your model and data

What-if tool

Understand the input your model is receiving

Ask and answer "what-if" questions about your model's output

Compare model performance across different slices of your data

Compare performance across multiple models

Quantify the Cost

- Your model will never be 100%
- What does that extra performance cost?
- How does it affect different slices?

50% Formance cost? nt slices?

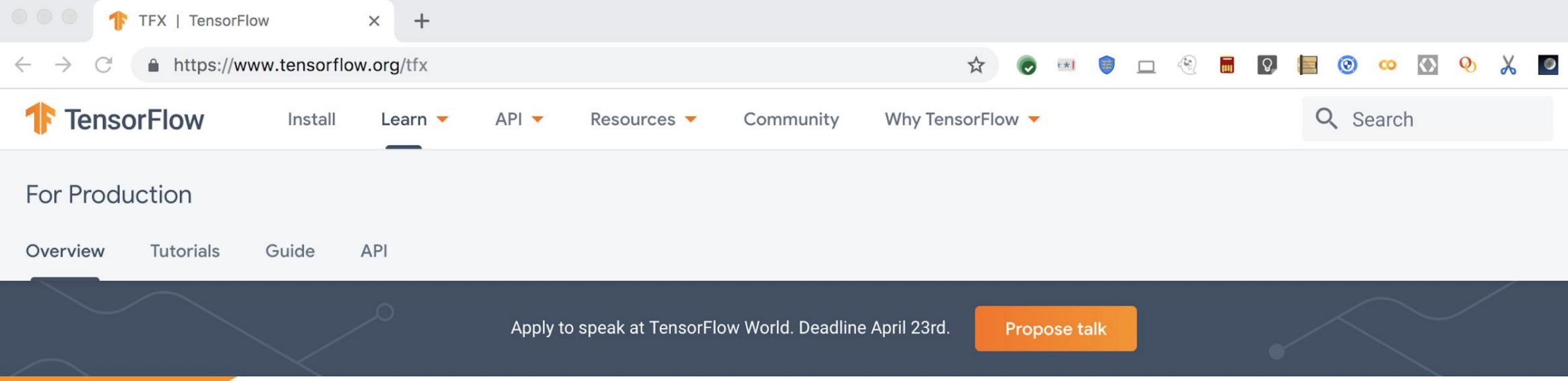
0.9573

TensorFlow Extended (TFX)

Flexible orchestration and metadata

Extensible with custom components

- Standard components for your production model needs



TensorFlow Extended (TFX) is an end-to-end platform for deploying production ML pipelines

When you're ready to move your models from research to production, use TFX to create and manage a production

https://www.tensorflow.org/tfx

Thank you!

Helpful resources

- https://tensorflow.org/tfx Web
- Repo
- Community
- YouTube

- https://goo.gle/tfx-group

Robert Crowe TensorFlow Developer Advocate

https://github.com/tensorflow/tfx

https://goo.gle/tfx-youtube

us know

w think.

Please Remember to rate this session

J Follow us @gotocph

GOTO Copenhagen 2019 Conference Nov. 18 - 20

Thank you!

Images

https://freephotos.cc/shoes#404168 <u>https://pixabay.com/photos/confused-hands-up-unsure-perplexed-2681507/</u> <u>https://pixabay.com/photos/shoe-handmade-shoes-dress-shoes-632702/</u> https://pixabay.com/photos/shoes-brown-leather-fashion-2434210/ https://pixabay.com/photos/turtle-tortoise-reptile-2815539/ <u>https://pixabay.com/photos/dog-and-cat-free-pet-cat-isolated-3484559/</u> <u>https://pixabay.com/photos/sneakers-chuck-s-sneaker-shoe-2768263/</u> https://pixabay.com/photos/high-heeled-shoes-pumps-2781084/ https://pixabay.com/photos/business-stock-finance-market-1730089/ <u>https://pixabay.com/vectors/tag-ticket-label-hole-color-35797/</u> <u>https://pixabay.com/photos/isolated-hare-nature-animal-grass-2014108/</u>