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Imagine if you will ...



You’re an Online 
Retailer Selling 
Shoes ...

Your model predicts 
click-through rates (CTR), 
helping you decide how much 
inventory to order



When suddenly

Your AUC and prediction accuracy 
have dropped on men’s dress shoes!









What causes problems?

Kinds of problems

● Fast - Example: bad sensor, bad software update

● Slow - Example: drift



Sudden Problems
Problem with data 
collection

○ Bad sensor/camera
○ Bad log data
○ Moved or disabled 

sensors/cameras

Systems problem

○ Bad software update
○ Loss of network 

connectivity
○ System down
○ Bad credentials



Gradual Problems
Data changes

○ Trend and seasonality
○ Distribution of 

features changes
○ Relative importance of 

features changes

World changes

○ Styles change
○ Competitors change
○ Business expands to 

other geos



Why “Understand” the model?

Mispredictions do not have uniform cost to your business.

The data you have is rarely the data you wish you had.

Model objective is nearly always a proxy for your business objectives

Some percentage of your customers may have a bad experience

The real world doesn’t stand still



Production ML and Change



● Ground truth changes slowly (months, years)
● Model retraining driven by:

○ Model improvements, better data
○ Changes in software and/or systems

● Labeling
○ Curated datasets
○ Crowd-based

Easy Problems



● Ground truth changes faster (weeks)
● Model retraining driven by:

○ Declining model performance
○ Model improvements, better data
○ Changes in software and/or systems

● Labeling
○ Direct feedback
○ Crowd-based

Harder Problems



● Ground truth changes very fast (days, hours, min)
● Model retraining driven by:

○ Declining model performance
○ Model improvements, better data
○ Changes in software and/or systems

● Labeling
○ Direct feedback
○ Weak supervision

Really Hard Problems



Machine Learning



In addition to training an amazing model ...

Modeling Code



… a production solution requires so much more

Configuration

Data Collection
Data Verification

Feature Extraction Process Management Tools

Analysis Tools

Machine Resource 
Management

Serving 
Infrastructure Monitoring

ML Code



Tales From The Trenches

https://twitter.com/ginablaber/status/971450218095943681



TensorFlow Extended (TFX)



Powers Alphabet’s most important bets and products

Tensorflow Extended (TFX)



Ranking Tweets with 
TensorFlow - Twitter
https://goo.gle/tf-twitter-rank

“... we have re-tooled our 
machine learning platform to 
use TensorFlow. This yielded 
significant productivity gains 
while positioning ourselves to 
take advantage of the latest 
industry research.”



Production Machine Learning
Machine Learning Development

● Labeled data

● Feature space coverage

● Minimal dimensionality

● Maximum predictive data

● Fairness

● Rare conditions

● Data lifecycle management



Production Machine Learning
Modern Software Development

● Scalability

● Extensibility

● Configuration

● Consistency & Reproducibility

● Modularity

● Best Practices

● Testability

● Monitoring

● Safety & Security

Machine Learning Development

● Labeled data

● Feature space coverage

● Minimal dimensionality

● Maximum predictive data

● Fairness

● Rare conditions

● Data lifecycle management

+



Production Machine Learning
“Hidden Technical Debt in Machine Learning Systems”

NIPS 2015

http://bit.ly/ml-techdebt

http://bit.ly/ml-techdebt


Libraries

Components

TFX Production Components
Data 

Validation

Feature 
Engineerin

g

Train 
Model

Data 
Ingestion

Validate 
Model

Push If 
Good

Serve 
Model

Bulk Inference



Horizontal Layers Coordinate Components

28

Data 
Ingestion

TensorFlow 
Data Validation

TensorFlow 
Transform

Estimator 
Model

TensorFlow 
Model Analysis

TensorFlow 
Serving

Enregistre
ment

Shared Utilities for Garbage Collection, Data Access Controls

Pipeline Storage

Shared Configuration Framework and Job Orchestration

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization



What is a TFX component?



What makes a Component

Coordinates job execution

Performs the work

Updates ml.metadata



What makes a Component?

Well defined config



What makes a Component?



What makes a Component?



Orchestration Styles



Task-Aware Pipelines



Task- and Data-Aware Pipelines
Metadata Store



TFX Orchestration



Bring your own Orchestrator
Flexible runtimes run components in the proper order using 
orchestration systems such as Airflow, Kubeflow, or Beam



Apache Airflow Kubeflow Pipelines

Orchestrators and DAGs
Apache Beam



TFX and Kubeflow Pipelines
Kubeflow Pipelines

● Metadata tracking + caching enabled, ability to 

resume pipelines from crashes.

● Containers as custom components

● Orchestrate existing R/C++/Scala components 

and get metadata tracking + caching

● Artifact provenance and  lineage visualized

● Deploy using Marketplace

● CloudSQL can be used to persist pipeline 

metadata across clusters

TensorFlow Extended (TFX)

● Open-source version of what Google uses 

internally for Production ML

● Currently supported orchestrators:

○ Kubeflow

○ Apache Airflow

○ Apache Beam

○ We’re adding more

○ You can add more



TFX Orchestration in a Notebook
● Experimental environment for iterative development
● Build up your pipeline iteratively in a Jupyter / Colab notebook 

and export to production with minimal changes
● InteractiveContext object handles component execution and 

artifact visualization
● In production, you would use Airflow, Kubeflow, or similar

context = InteractiveContext()

component = MyComponent(...)
context.run(component)
context.show(component.outputs['my_output'])



Metadata Store



Type definitions of Artifacts and their Properties

What is in Metadata Store?



Type definitions of Artifacts and their Properties

Execution Records (Runs) of Components

What is in Metadata Store?



Type definitions of Artifacts and their Properties

Execution Records (Runs) of Components

Data Provenance Across All Executions

What is in Metadata Store?



Metadata-Powered 
Functionality

Find out which data a model 
was trained on



Metadata-Powered 
Functionality

Compare previous model runs



Metadata-Powered 
Functionality

Re-use previously computed 
outputs



Metadata-Powered 
Functionality

Carry-over state from previous 
model runs



Distributed Pipeline Processing:
Apache Beam



What is Apache Beam?

- A unified batch and stream distributed processing API

- A set of SDK frontends: Java, Python, Go, Scala, SQL

- A set of Runners which can execute Beam jobs into various 
backends: Local, Apache Flink, Apache Spark, Apache 
Gearpump, Apache Samza, Apache Hadoop, Google Cloud 
Dataflow, …



Apache Beam

Sum Per Key

input | Sum.PerKey()

Python

input.apply(

  Sum.integersPerKey())

Java

stats.Sum(s, input)

Go

SELECT key, SUM(value) 

FROM input GROUP BY key

SQL

⋮

Cloud Dataflow

Apache Spark

Apache Flink

Apache Apex

Gearpump

Apache Samza

Apache Nemo 
(incubating)

IBM Streams



TFX Components & Beam

Beam
Flink Dataflow

Executor

Spark



TFX Standard Components



Bulk InferenceExampleGen

BATCH 
INFERENCE 

DATA 
(UNLABELED)



Component: ExampleGen

example_gen = CsvExampleGen(input_base=external_input(data_root))

Configuration

ExampleGen

Raw Data

Inputs and Outputs

CSV TF Record

Split TF 
Record Data

Training

Eval



Component: StatisticsGen

statistics_gen = StatisticsGen(
    input_data=example_gen.outputs['examples'])

Visualization

StatisticsGen

Data

ExampleGen

Statistics

ConfigurationInputs and Outputs



Analyzing Data with TensorFlow Data Validation



Component: SchemaGen

SchemaGen

Statistics

StatisticsGen

Schema

infer_schema =
    SchemaGen(statistics=statistics_gen.outputs['statistics'],
              infer_feature_shape=False)

Visualization

ConfigurationInputs and Outputs



Component: ExampleValidator

Example
Validator

Statistics Schema

StatisticsGen SchemaGen

Anomalies 
Report

validate_stats = ExampleValidator(
      statistics=statistics_gen.outputs['statistics'],
      schema=infer_schema.outputs['schema'])

Visualization

ConfigurationInputs and Outputs



Component: Transform

transform = Transform(
      examples=example_gen.outputs['output_data'],
      schema=infer_schema.outputs['schema'],
      module_file=module_file)

for key in _DENSE_FLOAT_FEATURE_KEYS:
    outputs[_transformed_name(key)] = transform.scale_to_z_score(
        _fill_in_missing(inputs[key]))
# ...

outputs[_transformed_name(_LABEL_KEY)] = tf.where(
      tf.is_nan(taxi_fare),
      tf.cast(tf.zeros_like(taxi_fare), tf.int64),
      # Test if the tip was > 20% of the fare.
      tf.cast(
          tf.greater(tips, tf.multiply(taxi_fare, tf.constant(0.2))), tf.int64))

# ...

Transform

Data Schema

Transform 
Graph

Transformed 
Data

ExampleGen SchemaGen

Trainer

Code

Code

ConfigurationInputs and Outputs



Using TensorFlow Transform for Feature Engineering



Using TensorFlow Transform for Feature Engineering

Training Serving



Component: Trainer

Trainer

Data Schema

Transform SchemaGen

Evaluator

Code

Transform 
Graph

Model 
Validator Pusher

Model(s)

Highlight: SavedModel Format

TensorFlow 
Serving

TensorFlow 
Model Analysis

Train, Eval, and Inference Graphs

SignatureDefEvalSavedModel

SavedModel

Inputs and Outputs



Component: Trainer

trainer = Trainer(
      module_file=module_file,
      transformed_examples=
          transform.outputs['transformed_examples'],
      schema=infer_schema.outputs['schema'],
      transform_graph=transform.outputs['transform_graph'],
      train_args=trainer_pb2.TrainArgs(num_steps=10000),
      eval_args=trainer_pb2.EvalArgs(num_steps=5000))

Just TensorFlow :)

Trainer

Data Schema

Transform SchemaGen

Evaluator

Code

Transform 
Graph

Model 
Validator Pusher

Model(s)

Inputs and Outputs

Code

Configuration







Component: Evaluator

Evaluator

Data Model

ExampleGen Trainer

Evaluation 
Metrics

Visualization

ConfigurationInputs and Outputs

model_analyzer = Evaluator(
      examples=example_gen.outputs['output_data'],
      model=trainer.outputs['model'],
      feature_slicing_spec=evaluator_pb2.FeatureSlicingSpec(
          specs=[evaluator_pb2.SingleSlicingSpec(
              column_for_slicing=['trip_start_hour'])]))



Component: ModelValidator

● Validate using current eval data
● “Next-day eval”, validate using unseen data

Model 
Validator

Data

ExampleGen Trainer

Validation 
Outcome

Model (x2)

model_validator = ModelValidator(
      examples=example_gen.outputs['output_data'],
      model=trainer.outputs['model'])

ConfigurationInputs and Outputs

Configuration Options



Component: Pusher

Validation 
Outcome

Pusher

Model
Validator

Pusher
PusherDeployment 

Options

pusher = Pusher(
      model=trainer.outputs['model'],
      model_blessing=model_validator.outputs['blessing'],
      push_destination=pusher_pb2.PushDestination(
          filesystem=pusher_pb2.PushDestination.Filesystem(
              base_directory=serving_model_dir)))

Block push on validation outcome

Push destinations supported today
● Filesystem (TensorFlow Lite, TensorFlow JS)
● TensorFlow Serving

ConfigurationInputs and Outputs



Component: BulkInferrer

Validation 
Outcome

BulkInferrer

Model
Validator

Pusher
PusherInference 

Result

Block batch inference on a successful model validation. 
Choose the inference examples from example gen's output.
Choose the signatures and tags of inference model.

Inputs and Outputs

Configuration Options

ExampleGen

Unlabelled 
examples

Trainer

Model

Inference Result

Contains features and predictions.

bulk_inferrer = BulkInferrer(  
    examples=inference_example_gen.outputs[‘examples’],
    model_export=trainer.outputs[‘output’],
    model_blessing=model_validator.outputs[‘blessing’],
    data_spec=bulk_inferrer_pb2.DataSpec(
        example_splits=[‘unlabelled’]),
    model_spec=bulk_inferrer_pb2.ModelSpec())

Configuration



TFX Custom Components



Extend the existing components
Replace the default component executor with your

own code, providing the ability to extend existing
components with your own implementation.



Semi-Custom Component:

Overriding with your own executor

● Start with an existing component

● Extend BaseExecutor and implement Do()

● Add your custom code into the Do() method

● Use custom_config parameters to add inputs to the custom executor

class Executor(base_executor.BaseExecutor):

  def Do(self, input_dict,
         output_dict,
         exec_properties):



Executors do the work

Beam
Flink Dataflow

TRANSFORM, ETC..

Spark



Executors do the work

TensorFlow

TRAINER



Executors do the work

PUSHER



Semi-Custom
Component



Build your own component
Create your own components to run within a TFX

pipeline while still providing the benefits of metadata
management, lineage, and pipeline monitoring.



Custom Component:

New Component Inputs & Outputs
Use ComponentSpec to define the new inputs and outputs

● INPUTS: Input artifacts that will be passed into the executor
● OUTPUTS: Output artifacts which the executor will produce
● PARAMETERS: Additional properties required by the executor. These are non-artifact 

parameters defined in the pipeline DSL and passed into execution.

class MyComponentSpec(types.ComponentSpec):

  PARAMETERS = {
      'timeout_sec': ExecutionParameter(type=int),
  }
  INPUTS = {
      'model_export': ChannelParameter(type_name='ModelExportPath'),
  }
  OUTPUTS = {
      'MyBlessing': ChannelParameter(type_name='ModelBlessingPath'),
  }



Custom Component:

Your Executor, Inputs, Outputs, and Params

Same as when just doing a custom executor, but with the custom 
inputs and outputs defined in your custom ComponentSpec

class Executor(base_executor.BaseExecutor):
  """Start a trainer job on Google Cloud AI Platform."""

  def Do(self, input_dict,
         output_dict,
         exec_properties):
    """Starts a trainer job on Google Cloud AI Platform.





… back to the shoes



You’re an Online 
Retailer Selling 
Shoes ...

Your model predicts 
click-through rates (CTR), 
helping you decide how much 
inventory to order



When suddenly

Your AUC and prediction accuracy 
have dropped on men’s dress shoes!









● Problems are with current inference results

○ Example data will be from current inference requests

○ Not your training data

● Monitor to find problems early

Detecting Problems With Deployed Models



● To measure model performance, you need labels
○ Process feedback - Example: Actual versus predicted click-through

○ Semi-supervision - Human labeling - Expensive, limited

○ Weak supervision - Historical data, heuristics, comparison to other 
models

Detecting Problems With Deployed Models



First Things First

Check your data with the ExampleValidator component and 
the tools in TensorFlow Data Validation:

● No outliers

● No missing features

● Minimal distribution shift



shoe_sizeshoe_size

price



Analyze your model performance

● Check your current model performance with current data

○ Define slices for your domain - like Men’s Dress Shoes

○ Create labeled dataset from current inference requests

○ Use the Evaluator component and the tools in TensorFlow Model Analysis

○ If necessary, retrain your model
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Feature Space 
Coverage

● Identify regions in feature space 
where data coverage is sparse

● Collect more examples in sparse 
regions, if possible!

● Carefully add features to help 
create distinctions you’d like the 
model to make



Understand the input your model is 
receiving

Ask and answer “what-if” questions 
about your model’s output

Compare model performance 
across different slices of your data 

Compare performance across 
multiple models

Explore your model 
and data

What-if tool



Quantify the Cost

Your model will never be 100%

● What does that extra performance cost?
● How does it affect different slices?

0.9573



TensorFlow Extended (TFX)

Standard components for your production model needs

Flexible orchestration and metadata

Extensible with custom components



https://www.tensorflow.org/tfx



Thank you!

Robert Crowe
TensorFlow Developer Advocate

       @robert_crowe

Helpful resources

Web

Repo

Community

YouTube

https://tensorflow.org/tfx

https://github.com/tensorflow/tfx

https://goo.gle/tfx-group

https://goo.gle/tfx-youtube

https://tensorflow.org/tfx
https://github.com/tensorflow/tfx
https://goo.gle/tfx-group
https://goo.gle/tfx-youtube




https://freephotos.cc/shoes#404168
https://pixabay.com/photos/confused-hands-up-unsure-perplexed-2681507/
https://pixabay.com/photos/shoe-handmade-shoes-dress-shoes-632702/
https://pixabay.com/photos/shoes-brown-leather-fashion-2434210/
https://pixabay.com/photos/turtle-tortoise-reptile-2815539/
https://pixabay.com/photos/dog-and-cat-free-pet-cat-isolated-3484559/
https://pixabay.com/photos/sneakers-chuck-s-sneaker-shoe-2768263/
https://pixabay.com/photos/high-heeled-shoes-pumps-2781084/
https://pixabay.com/photos/business-stock-finance-market-1730089/
https://pixabay.com/vectors/tag-ticket-label-hole-color-35797/
https://pixabay.com/photos/isolated-hare-nature-animal-grass-2014108/

