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Normal Applications
f (| e. monollths) *



Monoliths are hard
to think about.



Monoliths are hard
to change.







Re-Integration



There are no good ways to
Integrate microservices.



There are no-good ways to
Integrate microservices.






Database



Integrating Microservices through the database

 Easy. “I have a database and | know how to use it
 Problem: eventually causes services to co-mingle.
 Results in violating the “bounded context.”

» Great to use inside a service boundary!

errible for sharing data or negotiating change.







Integrating microservices via RPC

 Avoids problems of database integration

 Feels natural given imperative programming
sensibilities

» Aligns with the request/response paradigm

* Problem: cascading failures

* Question: how do you debug this system?

» Answer: you build alog. /4 )\
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What's an event?



A shared narrative
describing the
evolution of the
business over
time.



A combination of:

 Notification
» State transfer




Also, events are
immutable.



Kafka Basics




What is a Streaming Platform?
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Kafka's Distributed Log
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The log is a simple idea

Old ] New
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Messages are added at the end of the log



Consumers have a position all of their own
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Only Sequential Access

Read to offset & scan
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Shard data to get scalability

Producer (1) Producer (2)  Producer (3)
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Linearly Scalable Architecture
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Single topic:

- Many producers machines
- Many consumer machines
- Many Broker machines

No Bottleneck!!
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Ingest / Output to practically any data source

Kafka Kafka
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Stream Processing in Kafka
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KSQL: an engine for continuous computation

SELECT card_number, count(sx)
FROM authorization_attempts
WINDOW (SIZE 5 MINUTE)

GROUP BY card_number
HAVING count(x) > 3;




Kafka Streams: a Java API for the same

public static void main(String[] args) {
StreamsBuilder builder = new StreamsBuilder();

builder.stream(”caterpillars")
.map((k, v) -> coolTransformation(k, v))

.to( )

new KafkaStreams(builder.build(), props()).start();



Microservices




| et’s build microservices on Kafka
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Suppose we have these services
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Many services share the same core facts

Most
services live
INn here

Catalog i /—\
eb- 2 turns




Kafka works as a Backbone for Services to exchange Events
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Recall that events wear two hats
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ECommerce Microservices (with RPC)

Webserver : ..
! - Orders Service calls Shipping
Submit Service to tell it to ship item.
Order \ » Shipping service looks up
address to ship to (from
Customer Service)
Orders Shipping Customer .
Service Service < Service * No Kafka @
—
S S S

shipOrder() getCustomer()



Refactoring Orders and Shipping
=

Webserver

oubm \ - Orders Service no longer
knows about the Shipping

service (or any other

Orders x Shipping | €= Customer service). Events are fire and

Service Service Service
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Refactoring Customers

s

Webserver
State

Submit
Order - Call to Customer service is

Shipping gone.
Orders SIEIIEE Customer - Instead data is replicated, as
Service events, into the shipping

\M‘ service, where it is queried
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Events are the key to scalable service ecosystems

Orders

Service '=>

Sender has no knowledge of
who consumes the event they
send. This decouples the
system.






What's a
database
anyway?









Storage
Engine




Commit
Log



Consider this simple system
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KAFKA
Find the code online:

https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices



https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices
https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices

What are these things?
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KAFKA
Find the code online:

https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices



https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices
https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices

You are not just
writing microservices.



You are building an
inside-out database.



And that is a
good thing.




THANK YOU

-=  http://confluent.io/ksql
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