
@tlberglund

Commit
Logs
Microservices

in an age of

Databases
Onionsare like

Normal Applications
(i.e., monoliths)

Monoliths are hard
to think about.

Monoliths are hard
to change.

Re-integration?

Re-integration

There are no good ways to
integrate microservices.

There are no-good ways to
integrate microservices.

Filesystem

Database

Integrating Microservices through the database

• Easy. “I have a database and I know how to use it.”
• Problem: eventually causes services to co-mingle.
• Results in violating the “bounded context.”
• Great to use inside a service boundary!
• Terrible for sharing data or negotiating change.

RPC

Integrating microservices via RPC

• Avoids problems of database integration
• Feels natural given imperative programming

sensibilities
• Aligns with the request/response paradigm
• Problem: cascading failures
• Question: how do you debug this system?
• Answer: you build a log.

🤔

Events?

Events.

What’s an event?

A shared narrative
describing the

evolution of the
business over

time.

A combination of:
• Notification
• State transfer

Also, events are
immutable.

Kafka Basics

What is a Streaming Platform?

The Log ConnectorsConnectors

Producer Consumer

Streaming Engine

Kafka’s Distributed Log

The Log ConnectorsConnectors

Producer Consumer

Streaming Engine

The log is a simple idea

Messages are added at the end of the log

Old New

Consumers have a position all of their own

Sally
is here

George
is here

Fred
is here

Old New

Scan Scan

Scan

Only Sequential Access

Old New
Read to offset & scan

Shard data to get scalability

Producer (1) Producer (2) Producer (3)

Cluster of
machines Partitions live on

different machines

Messages are sent to
different partitions

Linearly Scalable Architecture

Consumers

Producers

KAFKA

Single topic:
- Many producers machines
- Many consumer machines
- Many Broker machines
No Bottleneck!!

The Connect API

The Log ConnectorsConnectors

Producer Consumer

Streaming Engine

Ingest / Output to practically any data source

Kafka
Connect

Kafka
ConnectKafka

Stream Processing in Kafka

The Log ConnectorsConnectors

Producer Consumer

Streaming Engine

SELECT card_number, count(*)
FROM authorization_attempts
WINDOW (SIZE 5 MINUTE)
GROUP BY card_number
HAVING count(*) > 3;

KSQL: an engine for continuous computation

Kafka Streams: a Java API for the same

 public static void main(String[] args) {
 StreamsBuilder builder = new StreamsBuilder();

 builder.stream(”caterpillars")

.map((k, v) -> coolTransformation(k, v))

.to(“butterflies”);

 new KafkaStreams(builder.build(), props()).start();
 }

Microservices

The Log ConnectorsConnectors

Producer Consumer

Streaming Engine

Let’s build microservices on Kafka

Suppose we have these services

Customer
Service

Shipping
Service

Many services share the same core facts

OrdersCustomers

Catalog

Most
services live

in here

Kafka works as a Backbone for Services to exchange Events

Kafka

Notification

State

Recall that events wear two hats

Notification State

ECommerce Microservices (with RPC)

Submit
Order

shipOrder() getCustomer()

Orders
Service

Shipping
Service

Customer
Service

Webserver • Orders Service calls Shipping
Service to tell it to ship item.

• Shipping service looks up
address to ship to (from
Customer Service)

• No Kafka 😢

Refactoring Orders and Shipping

Message Broker (Kafka)

Submit
Order

Order
Created

getCustomer()
RPC

Notification

Orders
Service

Shipping
Service

Customer
Service

Webserver

KAFKA

• Orders Service no longer
knows about the Shipping
service (or any other
service). Events are fire and
forget.

Refactoring Customers

Customer
Updated

Submit
Order

Order
Created

State

Orders
Service

Shipping
Service Customer

Service

Webserver

KAFKA

• Call to Customer service is
gone.

• Instead data is replicated, as
events, into the shipping
service, where it is queried
locally.

Events are the key to scalable service ecosystems

Sender has no knowledge of
who consumes the event they
send. This decouples the
system.

Orders
Service

What’s a
database
anyway?

SQL

Tables

Storage
Engine

Commit
Log

Consider this simple system

POST

GET

Lo
ad

Ba

la
nc

er

O
RD

ER
S

O
RD

ER
S

O
V

TO
PI

C

Order
ValidationsKAFKA

INVENTORY

Orders

Inventory

Fraud
Service

Order
Details
Service

Inventory
Service

(see previous figure)

Order
Created

Order
Validated

Orders View
Q in CQRS

Orders
Service
C is CQRS

Find the code online:
https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices

https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices
https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices

What are these things?

POST

GET

Lo
ad

Ba

la
nc

er

O
RD

ER
S

O
RD

ER
S

O
V

TO
PI

C

Order
ValidationsKAFKA

INVENTORY

Orders

Inventory

Fraud
Service

Order
Details
Service

Inventory
Service

(see previous
figure)

Order
Created

Order
Validated

Orders View
Q in CQRS

Orders
Service
C is CQRS

Find the code online:
https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices

https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices
https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices

You are not just
writing microservices.

You are building an
inside-out database.

And that is a
good thing.

THANK YOU
http://confluent.io/ksql

https://slackpass.io/confluentcommunity

@tlberglund

http://confluent.io/ksql
https://slackpass.io/confluentcommunity

