zZconfluent

Databases
are like OnlOnS

Commit
LogS In an age of

Microservices
. @tlberglund ,

Normal Applications
f (| e. monollths) *

Monoliths are hard
to think about.

Monoliths are hard
to change.

Re-Integration

There are no good ways to
Integrate microservices.

There are no-good ways to
Integrate microservices.

Database

Integrating Microservices through the database

 Easy. “I have a database and | know how to use it
 Problem: eventually causes services to co-mingle.
 Results in violating the “bounded context.”

» Great to use inside a service boundary!

errible for sharing data or negotiating change.

Integrating microservices via RPC

 Avoids problems of database integration

 Feels natural given imperative programming
sensibilities

» Aligns with the request/response paradigm

* Problem: cascading failures

* Question: how do you debug this system?

» Answer: you build alog. /4)\

| _—

What's an event?

A shared narrative
describing the
evolution of the
business over
time.

A combination of:

 Notification
» State transfer

Also, events are
immutable.

Kafka Basics

What is a Streaming Platform?

Produci Consumer

&

<\
Connectors The Log Connectors

S

Streamingé;n)gine B K

Kafka's Distributed Log

Connectors
wd

StreaminQine

Consumer

Produci:t

Connectors

8L

The log is a simple idea

Old] New
/\

Messages are added at the end of the log

Consumers have a position all of their own

George
is here
0ld Y New
) 1
Fred — Sally

IS here IS here

Only Sequential Access

Read to offset & scan

Old r-gu-s-‘-i-;-ﬁ New

Shard data to get scalability

Producer (1) Producer (2) Producer (3)

z 1

Messages are sent to

wa/ different partitions
UV RpUs U
@@ = E @ @@ - __Partitions live on

: different machines

Cluster of
machines

Linearly Scalable Architecture

Producers

KAFKA

Consumers

O

W _

TR

=

é
~
:

]

DN
58| [E

=

£

Single topic:

- Many producers machines
- Many consumer machines
- Many Broker machines

No Bottleneck!!

The Connect AP

Producer Consumer

PP

e\ &
Connectors The Log @
= -—

Streaming Engine

& & 2

Ingest / Output to practically any data source

Kafka Kafka

<7 Connect Connect ’)
L

D -

—) Kafka |—>

Stream Processing in Kafka

Producer Consumer
<\ &
Connectors The Log Connectors
S

Streamingé;n)gine ® K

KSQL: an engine for continuous computation

SELECT card_number, count(sx)
FROM authorization_attempts
WINDOW (SIZE 5 MINUTE)

GROUP BY card_number
HAVING count(x) > 3;

Kafka Streams: a Java API for the same

public static void main(String[] args) {
StreamsBuilder builder = new StreamsBuilder();

builder.stream(”caterpillars")
.map((k, v) -> coolTransformation(k, v))

.to()

new KafkaStreams(builder.build(), props()).start();

Microservices

| et’s build microservices on Kafka

Producer Consumer

S

<\ &\
The Log Connectors
«

S

b b 2 Karia

Streaming Engine

Connectors

Suppose we have these services

UL

Web-

Orders

server

1

Payment

Service

Shipping
Service
\ 4

N

€—CustomeP

Service

Fulfilrent

SerVice <€

> Service

Returns

Service
A

A4

Stock
Service

Many services share the same core facts

Most
services live
INn here

Catalog i /—\
eb- 2 turns

Kafka works as a Backbone for Services to exchange Events

e

Kafka \

State

Recall that events wear two hats

=

=

State

ECommerce Microservices (with RPC)

Webserver : ..
! - Orders Service calls Shipping
Submit Service to tell it to ship item.
Order \ » Shipping service looks up
address to ship to (from
Customer Service)
Orders Shipping Customer .
Service Service < Service * No Kafka @
—
S S S

shipOrder() getCustomer()

Refactoring Orders and Shipping
=

Webserver

oubm \ - Orders Service no longer
knows about the Shipping

service (or any other

Orders x Shipping | €= Customer service). Events are fire and

Service Service Service
> forget.
— RPC &
= =
== | Order getCustomer() =

Created

KAFKA

Refactoring Customers

s

Webserver
State

Submit
Order - Call to Customer service is

Shipping gone.
Orders SIEIIEE Customer - Instead data is replicated, as
Service events, into the shipping

\M‘ service, where it is queried
g Order g g IocaIIy.

Created bl
T Update

KAFKA

Events are the key to scalable service ecosystems

Orders

Service '=>

Sender has no knowledge of
who consumes the event they
send. This decouples the
system.

What's a
database
anyway?

Storage
Engine

Commit
Log

Consider this simple system

Inventory

INVENTORY -

o Orders
Orders g
Service Order
Cis CQRS Created
O Fraud
a Service
O A
\ Inventory
POST —— o 8 O O O Q Service
-8 8 3 see previous figure)
O @©
—1©
GET €« @ Order
Validated
3 Order
Details
Service
Orders View §
Qin CQRS >
Order
Validations

KAFKA
Find the code online:

https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices

https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices
https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices

What are these things?

Inventory
INVENTORY il
2 Orders
Orders :
Service Order
Cis CQRS Created
] Fraud
a Service
O :
Inventory
POST ——) ﬁ O O O O Service
-8 g 3 (see previous
e ‘_cg figure)
GET € @ Order
Validated
9 Order
Details
Service
Orders View §
Qin CQRS 5
Order
Validations

KAFKA
Find the code online:

https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices

https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices
https://github.com/confluentinc/kafka-streams-examples/tree/3.3.0-post/src/main/java/io/confluent/examples/streams/microservices

You are not just
writing microservices.

You are building an
inside-out database.

And that is a
good thing.

THANK YOU

-= http://confluent.io/ksql

https://slackpass.io/confluentcommunity

A
@tlberglund 1

:=confluent

http://confluent.io/ksql
https://slackpass.io/confluentcommunity

