
Transitioning Android Teams Into Kotlin

Garth Gilmour (@GarthGilmour)
Eamonn Boyle (@BoyleEamonn)

Me

Him

Us

2018 was a very significant year
• For developers on the JVM

We stopped asking:
• “Why aren’t you doing this in Java?”

We started asking:
• “Why are you doing this in Java?”

The revolution is actualised
• It’s a polyglot coding world now
• …and there’s no going back

This Talk Is (Maybe) Slightly Out Of Date

“You thought Android devs still used Java”

They still are? Inconceivable!

This talk assumes:
• You know Java and Android
• You have the scars to prove it

We will convince you that:
• There is a better way
• Kotlin is that way

A Veteran’s Guide To Moving Android Teams To Kotlin

Excellent interoperability
• Call legacy Java code easily
• Make calls into Kotlin from Java

Really clear, yet concise syntax
• Reduces the codebase by over 40%

Beloved by frameworks
• Spring Boot (esp. with Kofu)
• Services (Ktor and Http4k)
• User Interfaces (TornadoFx)
• Build tools (Gradle from V5)
• Dependency Injection (Koin)

Why Code In Kotlin? Null Safety
String Templates

Default parameters
Extensions

Free Functions
Coroutines

Single Expression
Functions

Reified generics
Data classes and

Properties
Type Inference

Smart Casts
Operator overloading

public class Program {
 public static void main(String[] args) {

List<String> data = Arrays.asList(
 "ab","cde","fghi","jklmn",
 "op","qrs","tuvw","xyz");

data.stream()
.flatMapToInt(CharSequence::chars)
.mapToObj(num -> (char)num)
.forEach(c -> System.out.printf("%s ", c));

 }
}

Let’s Print The Alphabet - In Java

a b c d e f g h i j k l m n o p q r s t u v w x y z

fun main() {
 val data = listOf(
 "ab","cde","fghi","jklmn",
 "op","qrs","tuvw","xyz")

data.flatMap { it.toList() }
 .forEach { print("$it ") }
}

Let’s Print The Alphabet - In Kotlin

a b c d e f g h i j k l m n o p q r s t u v w x y z

Why Use Kotlin On Android?

“Today we’re announcing another big step: Android
development will become increasingly Kotlin-first.
Many new Jetpack APIs and features will be offered
first in Kotlin. If you’re starting a new project, you
should write it in Kotlin;”

Google I/O 2019

Codebase reduction by 40% (JetBrains figure)

Simplify the remaining code

Plaster over Androids cracks

Access FP features / patterns (Java 8+)

Future proof your skill set

Developer happiness 

Why Use Kotlin On Android?

We’ve written an awful lot of code…
• Especially mobile applications with complex networking
• Also embedded systems, web applications etc...

For an awful lot of clients…
• Atlassian, Johnson Controls, Shopkeep, Cybersource

On every platform you’ve ever heard of
• Plus (if you were lucky) a few you managed to avoid

We switched to Kotlin four years ago
• For all applications built on top of the JVM
• Plus we are experimenting with Native and JS

Why Listen To Us?

Instil is a JetBrains training partner
• Written 3 Kotlin courses so far

We have delivered training for
• Household names (Europe and US)
• Brand new start-ups

We believe Kotlin will help you write better solutions
• Engineering Expertise is part of our ethos and Kotlin helps us
• We believe in improving development practices within our community

We started the Kotlin Belfast User Group
• We promote it to help people, not to make money

Why Listen To Us?

We don’t get royalties from JetBrains or Google

We’re placing a bet on Kotlin being the future

Why Listen To Us?

• What motivated us to switch?

• How did we make the move?

• Which features do we love?

• What problems did we face?

• Did we require new frameworks?

• What would we do differently?

• Are coroutines of any use? *

Questions To Answer

* we want to talk about coroutines because they're awesome…

Prior to Kotlin we had written:
• iOS mobile apps in Objective-C and Swift
• Cross-platform mobile apps in Xamarin
• Standard desktop apps in C / C++ / C#
• Web applications in just about everything
• JEE in all its incarnations (including EJB)
• Spring from the earliest days to WebFlux

We were tendering for some major Android jobs
• The developers didn’t want to use Java
• They really didn’t want to use Java

What Motivated Us?

Words From The Wise

“I do not like this Java lang
I do not like it, business man
It does not suit our software house
It makes me sad to click the mouse
I will not code it here or there
It sucks for Android anywhere”

David Robert Seuss, Software Engineer
(personal conversation with our CEO)

We had a problem on the Java Virtual Machine
• Kotlin was a pragmatic solution

By todays standards Java is not great
• But lots of great software is written in it

We still leverage our historical knowledge
• By remaining within the JVM ecosystem

What Motivated Us?

Java Kotlin

Words from the Wise

“Making the switch from Java to Kotlin was easy - being able
to use the same tools and libraries that we knew and loved
meant that we felt productive in Kotlin almost immediately.

Over time, our code then became simpler, more stable and
more performant as we started to experiment with the Kotlin
functional toolkit and coroutines.”

Chris van Es, Head of Engineering, Instil

Words from the Wise

“Working in Java is a fantastic developer experience because
you can use Kotlin.”

Kelvin Harron, Software Engineer, Instil

“Kotlin negates the biggest weakness of the Java Ecosystem,
i.e. Java.”

Eoin Mullan, Principal Software Engineer, Instil

The Community Was Going That Way

We wanted an epic, heroic tale of a
warrior’s struggle to final victory

It was less Kill Bill, and more Kill Kenny – very easy

Kotlin’s interop story is awesome
• @Throws (adds checked exception)
• @JvmOverloads (for default params)
• @JvmName (rename most things)
• @JvmWildcard (manage generics)

Interop never caused serious disruption
• But it was reassuring to know we had

low level control should it be needed
• Emotional Support Annotations 

In Case Of Interoperability Emergency…

Expressive

•Meaningful
•Telling
•Revealing

Basic Class Design

public class Movie {
private String title;
private String description;
private Rating rating;
private Genre genre;

}

Basic Class Design

public class Movie {
private String title;
private String description;
private Rating rating;
private Genre genre;

public Movie(String title, String description, Rating rating, Genre genre) {
this.title = title;
this.description = description;
this.rating = rating;
this.genre = genre;

}
}

Basic Class Design
public class Movie {

private String title;
private String description;
private Rating rating;
private Genre genre;

public Movie(String title, String description, Rating rating, Genre genre) {
this.title = title;
this.description = description;
this.rating = rating;
this.genre = genre;

}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;

}

Basic Class Design
public class Movie {

private String title;
private String description;
private Rating rating;
private Genre genre;

public Movie(String title, String description, Rating rating, Genre genre) {
this.title = title;
this.description = description;
this.rating = rating;
this.genre = genre;

}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;

}

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

public Rating getRating() {
return rating;

}

public void setRating(Rating rating) {
this.rating = rating;

}

public Genre getGenre() {
return genre;

}

public void setGenre(Genre genre) {
this.genre = genre;

}
}

class Movie(var title: String,
var description: String,
var rating: Rating,
var genre: Genre) {

}

Basic Class Design
import java.util.Objects;

public class Movie {
private String title;
private String description;
private Rating rating;
private Genre genre;

public Movie(String title, String description, Rating rating, Genre genre) {
this.title = title;
this.description = description;
this.rating = rating;
this.genre = genre;

}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;

}

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

public Rating getRating() {
return rating;

}

public void setRating(Rating rating) {
this.rating = rating;

}

public Genre getGenre() {
return genre;

}

public void setGenre(Genre genre) {
this.genre = genre;

}

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;
 Movie movie = (Movie) o;
 return Objects.equals(title, movie.title) &&
 Objects.equals(description, movie.description) &&
 Objects.equals(rating, movie.rating) &&
 Objects.equals(genre, movie.genre);
 }

 @Override
 public int hashCode() {
 return Objects.hash(title, description, rating, genre);
 }

 @Override
 public String toString() {
 return "Movie{" +
 "title='" + title + '\'' +
 ", description='" + description + '\'' +
 ", rating=" + rating +
 ", genre=" + genre +
 '}';
 }
}

data class Movie(var title: String,
var description: String,
var rating: Rating,
var genre: Genre) {

}

But what if we need:
• Equality
• Hashing
• Copying
• Decomposition

menu {
submenu(“Setup") {

item(“Edit Details", ::editDetails)
item(“Reset Password", ::resetPassword)

}

submenu(“Sessions") {
item(“Create New Session", ::createNewSession)
item(“View All Sessions", ::viewall)
item(“Synchronize", ::synchronize)

}

Lambda’s With Receivers

fun menu(builder: Menu.() -> Unit) = Menu(builder)

class Menu(builder: Menu.() -> Unit) {
init {

this.builder()
}

fun submenu(description: String, builder: Menu.() -> Unit) { ... }

fun item(description: String, action: Action) { ... }

. . .
}

Lambda’s With Receivers

fun welcome() = sendCommandsToDevice {
appendBootstrap()
appendSelfCheck()
appendBeep(BeepCode.WELCOME)

}

fun resetDevice() = sendCommandsToDevice {
appendReset()
appendFlush()

}

Lambda’s With Receivers

private fun sendCommandsToDevice(instructions: ICommandBuilder.() -> Unit) {
val commands = ioPortDelegate

.createDeviceCommandBuilder()

.apply(instructions)

.commands

sendDeviceCommands(commands)
}

Lambdas With Receivers

sourceSets {
create("integrationTest") {

withConvention(KotlinSourceSet::class) {
kotlin.srcDir("src/integrationTest/kotlin")
resources.srcDir("src/integrationTest/resources")
compileClasspath += sourceSets["main"].output + configurations["testRuntimeClasspath"]
runtimeClasspath += output + compileClasspath + sourceSets["test"].runtimeClasspath

}
}

}

Lambdas With Receivers

fun <T> with(obj: T, f: T.() -> Unit) = obj.f()

class Tank {
fun forward(distance: Int) = println("Going forward $distance")
fun backward(distance: Int) = println("Going backward $distance")
fun turn(degrees: Int) = println("Turning $degrees degrees")
fun fire() = println("Firing cannon")

}

fun main() {
val tank = Tank()
with(tank) {

forward(200)
turn(45)
backward(50)
fire()

}
}

Lambdas With Receivers  Standard Utility Functions

Going forward 200
Turning 45 degrees
Going backward 50
Firing cannon

@kotlin.internal.InlineOnly
public inline fun <T, R> with(receiver: T, block: T.() -> R): R {

contract {
callsInPlace(block, InvocationKind.EXACTLY_ONCE)

}
return receiver.block()

}

Standard Utility Functions

with(navigationBar) {
navigationBarTitle.visibility = View.GONE
searchBar.visibility = View.VISIBLE
searchBar.inputType = inputType
searchBar.transformationMethod = null

}

Standard Utility Functions

Standard Utility Functions

Current Object
passed as receiver

Current Object
Returned

Result Of Block
Returned

Current Object
passed via ‘it’

with apply run

also let

val toast = Toast.makeText(context, message, duration).apply {
this.duration = duration
this.view = buildToastView(view, message)
this.setGravity(CENTER_VERTICAL, 0, Y_AXIS_OFFSET)

}

Standard Utility Functions

leftSwipe.let {
it.translationX += delta
it.translationX = limitInDistance(it.translationX)

}

rightSwipe.let {
it.translationX += delta
it.translationX = limitInDistance(it.translationX)

}

Standard Utility Functions

class MyThing {
var firstProp: Int = 123

var secondProp: Int
get() = firstProp * 2
set(value) {

firstProp = value / 2
}

var thirdProp by Delegate()
}

Delegated Properties

class Delegate {
 private var value: String = "Homer“

 operator fun getValue(thisRef: Any?,
property: KProperty<*>) : String {

 println("---> Getting $value")
 return value
 }
 operator fun setValue(thisRef: Any?,

property: KProperty<*>, value: String) {
 println("---> Setting $value")
 this.value = value
 }
}

Delegated Properties

val saveButtonText: String by lazy {
resourceService.getStringResource(R.string.save)

}

val addButtonText: String by lazy {
resourceService.getStringResource(R.string.add)

}

val cancelButtonText: String by lazy {
resourceService.getStringResource(R.string.cancel)

}

Delegated Properties

Note the type
A lazy object manages the initialisation but it
is consumed as a simple string

fun <T> weak(value: T? = null) = WeakReferenceDelegate(value)

class WeakReferenceDelegate<T>(value: T?) {
private var weakReference = WeakReference(value)

operator fun getValue(thisRef: Any,
prop: KProperty<*>): T? = weakReference.get()

operator fun setValue(thisRef: Any, prop: KProperty<*>, value: T) {
weakReference = WeakReference(value)

}
}

Delegated Properties

Delegated Properties

private var dialog: InProgressDialog? by weak()

Note the type
A WeakReferenceDelegate object manages the
WeakReference but it is read and written as the inner type

abstract class BaseActivity<ViewModelType : ActivityViewModel>
: AppCompatActivity(),

DisposableManager,
CoroutineScope by MainScope() {

. . .
}

Implementation by Delegation

Extensions allow us write more expressive code

They also help us create Domain Specific Languages

Extension Functions

deviceStatusStream()
.filterForErrors()
.collate().and()
.send()

private fun Observable<Long>.runningAverage(bufferSize: Int) =
this.buffer(bufferSize, 1)

.map { round(it.average()) }

Extension Functions

private val currentHardwareOffsets =
liveSession.hwTimeStamps

.timestamp(TimeUnit.MILLISECONDS, scheduler)

.map { it.time() - it.value().timestampMilliseconds }

.runningAverage(5)

Extension Functions

<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textAlignment="center"/>

TextView titleView = activity.findViewById<TextView>(R.id.title)
titleView.text = "Hello World!"

title.text = "Hello World!"

Extension Functions

Kotlin Android Extensions provides this
It most cases it will cache to avoid multiple calls to findViewById

Null Safety

private fun processUserPolicy(user: User) {
val policy = user.policy
if (policy.isComplete) {

policyProcessor.process(policy)
}

}

private static void processUserPolicy(User user) {
if (user != null && user.getPolicy() != null) {

Policy policy = user.getPolicy();
if (policy.isComplete()) {

policyProcessor.process(policy);
}

}
}

Java

Kotlin

Words from the Wise

“What's a null pointer exception?

Aaron Finn, Associate Software Engineer, Instil

@BindingAdapter("onEnterKeyPressed")
fun onEnterKeyPressed(editText: EditText, runnable: Runnable?) {

editText.setOnKeyListener { view, keyCode, _ ->
if (keyCode == KeyEvent.KEYCODE_ENTER) {

view.hideKeyboard()
view.clearFocus()
runnable?.run()
true

} else {
false

}
}

}

Null Safety (Plus Friends)

Safe Call Operator

<androidx.appcompat.widget.AppCompatEditText
app:onEnterKeyPressed="@{() -> vm.activate()}"

@BindingAdapter("onEnterKeyPressed")
fun onEnterKeyPressed(editText: EditText, runnable: Runnable?) {

editText.setOnKeyListener { view, keyCode, _ ->
if (keyCode == KeyEvent.KEYCODE_ENTER) {

view.hideKeyboard()
view.clearFocus()
runnable?.run()
true

} else {
false

}
}

}

Null Safety (Plus Friends)
Top Level Function

<androidx.appcompat.widget.AppCompatEditText
app:onEnterKeyPressed="@{() -> vm.activate()}"

@BindingAdapter("onEnterKeyPressed")
fun onEnterKeyPressed(editText: EditText, runnable: Runnable?) {

editText.setOnKeyListener { view, keyCode, _ ->
if (keyCode == KeyEvent.KEYCODE_ENTER) {

view.hideKeyboard()
view.clearFocus()
runnable?.run()
true

} else {
false

}
}

}

Null Safety (Plus Friends)

<androidx.appcompat.widget.AppCompatEditText
app:onEnterKeyPressed="@{() -> vm.activate()}"

Extension Method

@BindingAdapter("onEnterKeyPressed")
fun onEnterKeyPressed(editText: EditText, runnable: Runnable?) {

editText.setOnKeyListener { view, keyCode, _ ->
if (keyCode == KeyEvent.KEYCODE_ENTER) {

view.hideKeyboard()
view.clearFocus()
runnable?.run()
true

} else {
false

}
}

}

Null Safety (Plus Friends)

If as an expression

<androidx.appcompat.widget.AppCompatEditText
app:onEnterKeyPressed="@{() -> vm.activate()}"

@BindingAdapter("onEnterKeyPressed")
fun onEnterKeyPressed(editText: EditText, runnable: Runnable?) {

editText.setOnKeyListener { view, keyCode, _ ->
if (keyCode == KeyEvent.KEYCODE_ENTER) {

view.hideKeyboard()
view.clearFocus()
runnable?.run()
true

} else {
false

}
}

}

Null Safety (Plus Friends)

If as an expression

<androidx.appcompat.widget.AppCompatEditText
app:onEnterKeyPressed="@{() -> vm.activate()}"

Extension Method

Top Level Function

Safe Call Operator

leftSwipe.let {
it.translationX += delta
it.translationX = limitInDistance(it.translationX)

}

rightSwipe.let {
it.translationX += delta
it.translationX = limitInDistance(it.translationX)

}

Standard Utility Functions

leftSwipe?.let {
it.translationX += delta
it.translationX = limitInDistance(it.translationX)

}

rightSwipe?.let {
it.translationX += delta
it.translationX = limitInDistance(it.translationX)

}

Standard Utility Functions

Null safety and immutability are great

Some scenarios are a little messier
• Reading in untyped JSON
• DI injected values

Kotlin has lots of ways of help
• Good tooling
• lateinit
• lazy

Null Safety in Reality

One is your locker. The other is a garbage dump in the
Philippines

This one’s the dump They’re both your locker

val saveButtonText: String by lazy {
resourceService.getStringResource(R.string.save)

}

@Inject lateinit var loginViewModel: LoginViewModel
@Inject lateinit var approvalViewModel: ApprovalViewModel
@Inject lateinit var transferViewModel: TransferViewModel
@Inject lateinit var resourceService: ResourceService

Null Safety in Reality

data class Reward(
@JsonProperty("type") val type: RewardType,
@JsonProperty("points") val points: Int,
@JsonProperty("name") val name: String,
@JsonProperty("eligible") val eligible: Boolean,

)

Null Safety in Reality

Non-nullable vals can be used when working with JSON
Retrofit uses Jackson Object Mapper (which has a Kotlin specific module)

Introducing Coroutines

suspend fun doWork() {
disableUI()
val exchangeRates = readExchangeRate()
val report = buildReport(exchangeRates)
saveReport(report)
enableUI()

}

fun doWork() {
disableUI()
val exchangeRates = readExchangeRate()
val report = buildReport(exchangeRates)
saveReport(report)
enableUI()

}

Introducing Coroutines

suspend fun doWork() {
disableUI()
val exchangeRates = readExchangeRate()
val report = buildReport(exchangeRates)
saveReport(report)
enableUI()

}

suspend

suspend

suspend

return

Introducing Coroutines

suspend fun doWorkWithThreadControl() {
disableUI()
withContext(Dispatchers.IO) {

val exchangeRates = readExchangeRate()
val report = buildReport(exchangeRates)
saveReport(report)

}
enableUI()

}

1 1 2 2 3 3 4 4 5 5 6 6 7 7

1

1

2

2

3

3

4

4

5

5

6

6

7

7

Historically we had used RxJava extensively
• To bypass standard features like AsyncTask

With Kotlin, we’ve used RxKotlin heavily too

We started using coroutines when they were experimental
• We’ve found lots of code can be simplified by coroutines

We still use Rx when what we’re modelling is intuitively a stream

Using Coroutines

private suspend fun processUpdateRequest(update: Update,
requestOptions: RequestOptions) {

val customer = customerService.customerDetails(update.customerId)
val transaction = transactionBuilder.build(requestOptions)
transaction.customer = customer
customerSaleService.updateTransactionWithCustomer(transaction)

val updateCopy = update.createCopy()
transactionDao.save(transaction)
eventBus.requestComplete(transaction, update)

}

Using Coroutines

Realm threading restrictions were painful

Required specific threads for work

Coroutines made the threading easier

Using Coroutines

private fun fetchAndPersistSettings() = async(networkDispatcher) {
val settings = fetchSettings()
realmWrite { realm ->

updateDao.overwrite(realm, settings)
}

}

We experimented with Kotlin Test but reverted to JUnit
• We were looking at Spek with Kotlin support but encountered issues

Some Java interop requires back ticking to avoid language clashes

What Were The Pain Points?

@Test
fun shouldConvertBytesHeldAsPositiveToPositiveIntegers() {

assertThat(1.toByte().toPositiveInt(), `is`(equalTo(1)))
assertThat(12.toByte().toPositiveInt(), `is`(equalTo(12)))
assertThat(123.toByte().toPositiveInt(), `is`(equalTo(123)))
assertThat(127.toByte().toPositiveInt(), `is`(equalTo(127)))

}

doReturn("$20.00").`when`(monetaryFormatter).format(Monetary.TWENTY)
doReturn("$5.00").`when`(monetaryFormatter).format(Monetary.FIVE)

Documentation in some areas are lacking
• When features are experimental or very new
• Requires trial and error
• Some best practices would be nice
• Only happy paths shown e.g. Kotlin Gradle DSL

• Internally, some teams use and others have avoided

We saw some collisions in some Java class names
• But Kotlin type aliases came to rescue here

What Were The Pain Points?

Not too much “caught” us out but some things we would do differently

Some of this and the pain points are simply timing
• Better libraries and library support came later
• Language features stabilised e.g. coroutines

More and more libraries are writing Kotlin wrappers or Kotlin first interfaces
• Android, Realm, Apache Beam, Spring etc

Modern development requires so many dependencies – constant evolution

What Would We Do Differently?

Dagger  Koin

Retrofit  Rx style migrated to coroutines

Realm  Room

Glide  Coil (coroutine support)

Junit  Kotlin Test and AssertJ

Espresso Spoon, Awaitility
• These are just nicer with Kotlin

Frameworks We Used Or Would Use

We write quite a few multi-platform apps using Xamarin
• This is a good, stable, cross platform solution for writing native apps

We are keeping an eye on Kotlin Native
• Still in beta but with a lot of potential

Could allow us to write more Kotlin (yeah!) making Android easier
• But leveraging the same code for iOS

Kotlin Native

One to watch

Your existing skills remain relevant

The learning curve is gentle and straightforward

Interns and grads pick it up in no time

Developers with Java, C# & Swift experience adopt it very easily

The only pain is when go back to Java 

In Summary

Words from the Wise

“As a services business we need to focus primarily on our
customers needs. Thankfully, it's not just our developers that
have grown to love the language. Our customers are in turn
getting more maintainable software to market with lower
lead times.”

Matt McComb, Director of Business Development, Instil

Questions?

