
Practical Microservices

Thijs Schreijer
Kong Inc, Solutions architect

@thijsschreijer, @thekonginc
https://konghq.com

We are on an architectural journey

We are on a journey

Monolith Services Microservices/
Service Mesh

Serverless/FaaS Emerging Patterns

Why are architectures changing?

To scale our business

3 Trends

Information in Flight

180 ZB
Data created annually
by 2025*

25%
Data will be real-
time*

1
Source: https://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf

Cloud-native first,
Hybrid always 2

Service Explosion
From one to
thousands

3

Should we transition to Microservices?

Microservices Premium

Let’s have a look at
what it takes

3 Tracks

Technical / Operational / Organizational

Class

Class

Class

Class

Class

Class

Class Class Class

Class Class Class

Database

Technical Track Monolith

Lots of function calls
across different objects

Class

Class

Class

Class

Class

Class

Class Class Class

Class Class Class

Class

Class

Class

Class

Class

Class

Class Class Class

Class Class Class

Class

Class

Class

Class

Class

Class

Class Class Class

Class Class Class

Database

Technical Track Monolith

Lots of function calls
across different objects

Service

Service

Service

Service

Service

Service

Service Service Service

Service Service Service Database

Technical Track

Database

Database

Database

Microservices

Lots of network calls across
different services

Service

Service Service

Service Service

Service Database

Technical Track

Database

Database

Database

Microservices

Lots of network calls across
different services

Service Service Service

Service Service Service

Service Service Service

Service Service

Service Service Service

Service Service Service Service Service Service

Service Service

In monoliths we have objects , interfaces, and function calls.

In microservices we have services , interfaces, and network calls.

Technical Track

Little Hints:

Why do our mobile phone calls drop?

What are the most frequent causes for bad home internet?

Why are our downloads usually failing?

Technical Track

Service

Service

Service

Service

Service

Service

Service Service Service

Service Service Service Database

Technical Track

Database

Database

Database

Microservices

Lots of network calls across
different services

Network

Service

Service

Service

Service

Service

Service

Service Service Service

Service Service Service Database

Technical Track

Database

Database

Database

Microservices

Lots of network calls across
different services

Typical network problems: latency, security, routing, error handling,
observability

Latency

Cannot be ignored anymore. It compounds over calls.

Technical Track

Service Service Service
1ms 3ms

1ms 2ms

Total network latency: 7ms

Security

Mutual TLS to protect service-to-service communication and used an authentication
scheme for the service.

Technical Track

Service Service

Routing

Intelligently route traffic across different services, different versions,
different regions/DCs, and so on.

Technical Track

Service

Service

Service

Version 1.0

Version 1.1

Error Handling / Resiliency

Retries, Timeout Handling, Health-Checks, Circuit Breakers

Technical Track

Service Service

Service

Service

Observability

Retrieving traces, latency and analytics data across the entire system.

Technical Track

Service Service

Service Service Collector

Service Service

Service Service

Service Service Service Service

Technical Track

Class

Class

Class

Class

Class

Class

Class Class Class

Class Class Class

Service

Service

Service

Service

Service

Service

Service Service Service

Service Service Service

O(1)
O(n)

vs

Many ways to make the network reliable.

One of them is the Service Mesh pattern.

Technical Track

Service

Service

Service

Service

Service

Service

Service Service Service

Service Service Service Database

Technical Track

Database

Database

Database

Service Mesh

Lots of network calls across
different services through a
decentralized proxy

The biggest assumption is that the network latency between the
service and the local proxy is negligible

Service Service

Success Rate 100%
Network Latency 0ms

Success Rate 100%
Network Latency 0ms

Proxy Proxy

Technical Track

Hence the proxy must be a sidecar proxy

aka available on 127.0.0.1

Technical Track

One instance of proxy for each instance of the service

Service Service

Proxy Proxy

Service Service Service Service

Proxy Proxy

Technical Track

Service

Service

Service

Service

Service

Service

Service Service Service

Service Service Service Database

Database

Database

Database D
P

D
P

D
P

D
P

D
P

D
P

D
P

D
P

D
P

D
P

D
P

D
P

Control Plane (CP)

Push dynamic configuration
and act as TLS CA

Collect metrics from sidecars

Technical Track

Chaos Engineering

Simulating turbulence in the system to improve how the system responds and performs.

Technical Track

Service

Service

Service

Service

Service

Service

Service Service Service

Service Service Service Database

Technical Track

Database

Database

Database

Chaos Engineering

Simulating stress in the system
with the goal of improving the
system

Set up scenarios, execute them, identify weak areas and improve them

Let’s talk about size

Technical Track

Service

Service

Service

Service

Service

Service

Service Service Service

Service Service Service Database

Technical Track

Database

Database

Database

Ideal World

Service

Service

Service

Service

Service

Service

Service Service

Service
Service

Database

Technical Track

Database

Database

Database

Reality

Big enough to hold the domain logic we are decoupling

Technical Track

Technical Track

3 strategies

Ice Cream Scoop Lego Strategy Nuclear Strategy

Never go nuclear

Technical Track

Technical Track

Users

Search

Orders

Inventory

Invoices

Billing

Items Reviews Payouts

Points Offers Partners

Database

Technical Track

Users

Search

Orders

Inventory

Invoices

Billing

Items Reviews Payouts

Points Offers Partners

Database

Team 1

Team 2

Team 3

Team 2 keeps making code optimizations
that cause frequent deployments

Technical Track

Users Orders Invoices

Billing

Payouts Points

Offers Partners

Database

Team 1

Team 2

Team 3

Search Inventory

Items Reviews

Database

Technical Track

Users Orders Invoices

Billing

Payouts Points

Offers Partners

Database

Team 1

Team 2

Team 3

Search

Inventory

Items Reviews

Database

Database

Transitioning to microservices is refactoring

Technical Track

Technical Track

Clear understanding of
what the Monolith does
and does not

Understanding of
clients that are
consuming the
monolith

Tests, Tests, Tests.

Approaching the transition

Technical Track

Decouple clients from the monolithic server

Frontend

Load Balancer

N-S Traffic

N-S Traffic

Users

Search

Orders

Inventory

Invoices

Billing

Items Reviews Payouts

Points Offers Partners

Technical Track

Monolith

Frontend

API Gateway

N-S Traffic

N-S Traffic

Users

Search

Orders

Inventory

Invoices

Billing

Items Reviews Payouts

Points Offers Partners

Technical Track

Monolith

API Gateways are
also load balancers

Frontend

API Gateway

Users Search Orders Inventory Invoices

Billing Items Reviews

Payouts Points

Offers Partners

Technical Track

E-W Traffic

Routing

Frontend

API Gateway

Users Search Orders Inventory Invoices

Billing Items Reviews

Payouts Points

Offers Partners

Technical Track

E-W Traffic

Canary Release (ie, 10% traffic)

Search Inventory

Items Reviews

v1.0 v1.1

Technical Track

Convergence of API Gateway feature-set in both N-S and E-W

Technical Track

AuthN / AuthZ
Routing
Logging
Transformation
Analytics
Developer Portal
Integration Layer
Healthchecks
Circuit Breakers
Request Collapsing
CORS
Rate-Limiting
Throttling
Mutual TLS
…

AuthN / AuthZ
Routing
Logging
Transformation
Analytics
Developer Portal
Healthchecks
Circuit Breakers
Mutual TLS
…

N-S Features: E-W Features:

Technical Track

AuthN / AuthZ
Routing
Logging
Transformation
Analytics
Developer Portal
Integration Layer
Healthchecks
Circuit Breakers
Request Collapsing
CORS
Rate-Limiting
Throttling
Mutual TLS
…

AuthN / AuthZ
Routing
Logging
Transformation
Analytics
Developer Portal
Healthchecks
Circuit Breakers
Mutual TLS
…

N-S Features: E-W Features:

Technical Track

E-W uses a subset of the feature-set that N-S provides

Service

Service

Service

Service

Service

Service

Service Service Service

Service Service Service Database

Database

Database

Database D
P

D
P

D
P

D
P

D
P

D
P

D
P

D
P

D
P

D
P

D
P

D
P

Control Plane (CP)

Technical Track

DP

Frontend

Technical Track

Service Mesh is a pattern - not a technology

Technical Track

State Propagation

Technical Track

Service Service

Service-to-Service

Until now we focused on Service-to-Service communication

Technical Track

Service Event
Collector

Event Based Microservices

Ideal for eventual consistent state propagation

Service

Event Producer Event Consumer

Technical Track

Service Event
Collector

No need for Healthchecks and Circuit Breakers

As long as the Event Collector is up and running

Service

Event Producer Event Consumer

Network Network

Technical Track

Microservices and clients
directly consume and
invoke other
microservices.

Service-To-Service
(Synchronous)

Event Based (Asynchronous)

Microservices and clients push
event into an event collector
that’s being consumed by other
microservices.

Ideal for clients that require an
immediate response or need to
aggregate multiple services
together.

Ideal for microservice-to-microservice
communication for changing state
without requiring an immediate
response.

Done via HTTP, TCP/UDP,
gRPC,etc.

Done via Kafka, RabbitMQ, AWS
SQS, etc.

Example: Making a request to
retrieve an immediate response
of some sort (ie, retrieve list of
users).

Example: Making a request that doesn’t
require an immediate response (ie,
“orderCreated” event that triggers an
invoice creation by another
microservice).

Operational Track

Operational considerations for microservices

Operational Track

Operational Track

With microservices we expect an ever increasing
number of moving parts moving forward

Operational Track

Deployments, Logging, Testing, CI/CD, and so on

must be rethought

Operational Track

Operational Track

If we can’t operate a monolith today

do not move to microservices

Operational Track

Microservices Lifecycle

Deploy new version Duplicate 5% of
production traffic

Monitor latency and
status

Canary Release 5%
traffic

Increase to 10-100%
over time Run for 1-2 days Decommission older

version
Replicate across other
regions / datacenters

Operational Track

If we can’t operate a monolith today

do not move to microservices

Organizational Track

Organizational considerations for microservices

Organizational Track

Service Catalog, Dev Portals, Governance, AuthN/AuthZ, and so
on become exponentially more important

Documentation and on-
boarding becomes critical

Organizational Track

Organizational Track

Technology

Organization

Org + Tech Optimization

Monolith Services Microservices

Single large team Pizza teams + individual contributors

Inefficient Efficient, decoupled Hyperoptimized

Isn’t this SOA all over again?

SOA was driven by vendors.

Microservices are driven by developers.

82 82

API Management Traditional API Management is Outdated

 Services

Services Microservices/Service Mesh

 Infrastructure

Monolith Serverless/FaaS

Service Control Platform

Hybrid

Languages

Containers

Services

Protocols

Clouds

Architectures

Teams

Organizations

Platforms

3 Trends Microservices Hybrid World

Thank you!

@thijsschreijer @thekonginc
https://konghq.com

Questions?

@thijsschreijer @thekonginc
https://konghq.com

