
The do’s and
don’ts of

error handling

Joe Armstrong

A system is
fault tolerant

if it continues working
even if something is

wrong

Work like this is never finished  
it’s always in-progress

• Hardware can fail  
- relatively uncommon  

• Software can fail  
- common

Overview

• Fault-tolerance cannot be achieved 
using a single computer  
- it might fail

• We have to use several computers 
- concurrency 
- parallel programming 
- distributed programming 
- physics  
- engineering  
- message passing is inevitable

• Programming languages should make  
this easy doable

• How individual computers work is  
the smaller problem 

• How the computers are interconnected  
and the protocols used between the  
computers is the significant problem

• We want the same way to program large  
and small scale systems

Message passing
is inevitable

Message passing is the basis of
OOP

And CSP

Erlang
• Derived from Smalltalk and Prolog  

(influenced by ideas from CSP)

• Unifies ideas on concurrent  
and functional programming

• Follows laws of physics  
(asynchronous messaging)

• Designed for programming  
fault-tolerant systems

Building fault-tolerant
software boils down to
detecting errors and doing
something when errors are
detected

Types of errors
• Errors that can be detected at compile time

• Errors that can be detected at run-time

• Errors that can be inferred

• Reproducible errors

• Non-reproducible errors

Philosophy

• Find methods to prove SW correct at compile-time

• Assume software is incorrect and will fail at run time
then do something about it at run-time

Evidence for
SW failure is
all around us

Proving the self-
consistency of small

programs will not help
Why self-consistency?

Proving things is difficult

• Prove the Collatz conjecture (also known as the
Ulam conjecture, Kakutani’s prolem, Thwaites
conjecture, Hasse’s algorithm or the Syracuse
problem)

3N+1
• If N is odd replace it by 3N+1

• If N is even replace it by N/2

The Collatz conjecture is:
This process will eventually reach the number 1,
for all starting values on N

"Mathematics may not be ready for such
problems”

Paul Erdős

Conclusion

• Some small things can be proved to be self-
consistent

• Large assemblies of small things are impossible to
prove correct

Timeline
• 1980 - Rymdbolaget - first interest in Fault-tolerance - Viking Satellite

• 1985 - Ericsson - start working on “a replacement PLEX” - start thinking about errors - “errors
must be corrected somewhere else” “shared memory is evil” “pure message passing”

• 1986 - Erlang - unification of OO with FP

• 1998 - Several products in Erlang - Erlang is banned

• 1998 .. 2002 - Bluetail -> Alteon -> Nortel -> Fired

• 2002 - I move to SICS

• 2003 - Thesis

• 2004 - Back to Ericsson

• 2015 - Put out to grass
Erlang model of
computation widely
accepted and adopted
in many different languages

Erlang model of
computation rejected.
Shared memory systems
rule the world

Viking

Incorrect
Software
is not an option

Types of system
• Highly reliable (nuclear power plant control, 

air-traffic) - satellite (very expensive if they fail)

• Reliable (driverless cars) (moderately expensive if  
they fail. Kills people if they fail)

• Reliable (Annoys people if they fail) 
banks, telephone

• Dodgy - (Cross if they fail) 
Internet - HBO, Netflix

• Crap - (Very Cross if they fail) 
Free Apps 
 

Diffe
rent te

chnologies a
re

used to build and va
lidate  

the sy
ste

ms

How can we
make software that

works reasonably well
even if there are

errors in the software?

http://erlang.org/download/  
 armstrong_thesis_2003.pdf

http://erlang.org/download/

Requirements
• R1 - Concurrency

• R2 - Error encapsulation

• R3 - Fault detection

• R4 - Fault identification

• R5 - Code upgrade

• R6 - Stable storage

Source: Armstrong thesis 2003

The “method”
• Detect all errors (and crash???)

• If you can’t do what you want to do try to do 
something simpler

• Handle errors “remotely” (detect errors and ensure  
that the system is put into a safe state defined by 
an invariant)

• Identify the “Error kernel”  
 (the part that must be correct)

Supervision trees

From: Erlang Programming
Cesarini & Thompson 2009

Note: nodes 
can be on different
machine

Akka is “Erlang supervision for  
Java and Scala”

Source: Designing for Scalability with Erlang/OTP
Cesarini & Vinoski O’Reilly 2016

It works
• Ericsson smart phone data setup

• WhatsApp

• CouchDB (CERN - we found the higgs)

• Cisco (netconf)

• Spine2 (NHS - uk - riak (basho) replaces Oracle)

• RabbitMQ

• What is an error ?

• How do we discover an error ?

• What to do when we hit an error ?

What is an error?

• An undesirable property of a program

• Something that crashes a program

• A deviation between desired and observed  
behaviour

Who finds the error?
• The program (run-time) finds the error

• The programmer finds the error

• The compiler finds the error

The run-time finds an error
• Arithmetic errors 
 divide by zero, overflow, underflow, …

• Array bounds violated
• System routine called with nonsense  
 arguments

• Null pointer
• Switch option not provisioned
• An incorrect value is observed

What should the run-time do 
when it finds an error?

• Ignore it (no)
• Try to fix it (no)
• Crash immediately (yes) 
 

• Don’t Make matters worse
• Assume somebody else

will fix the problem

What should the programmer do 
when they don’t know what to do?

• Ignore it (no)
• Log it (yes)
• Try to fix it (possibly, but don’t make matters

worse)
• Crash immediately (yes) 

 
In sequential languages with single threads
crashing is not widely practised 

What’s the
big deal
about

concurrency?

A sequential program

A dead sequential program

Nothing here

Several parallel processes

Several processes
where one process failed

Linked processes

Red process dies

Blue processes are sent
error messages

Why
concurrent?

Fault-tolerance
is impossible

with one computer

AND

Scalable is
impossible

with one computer *

 * To more than the capacity of  
 the computer

AND

Security is very
difficult

with one computer

AND

I want one way to program
not two ways

one for local systems
the other for distributed systems

(rules out shared memory)

Detecting
Errors

Where do errors come from?
• Arithmetic errors

• Unexpected inputs

• Wrong values

• Wrong assumptions about the environment

• Sequencing errors

• Concurrency errors

• Breaking laws of maths or physics

Arithmetic Errors

• silent and deadly errors - errors where the
program does not crash but delivers an
incorrect result 

• noisy errors - errors which cause the
program to crash  

Silent Errors

• “quiet” NaN’s
• arithmetic errors 
 

• these make matters
worse

A nasty silent error

Oops?

http://www.military.com/video/space-technology/launch-
vehicles/ariane-5-rocket-launch-failure/2096157730001

http://moscova.inria.fr/~levy/talks/10enslongo/enslongo.pdf

http://moscova.inria.fr/~levy/talks/10enslongo/enslongo.pdf

Silent
Programming

Errors

Why silent? because the programmer
does not know there is an error

The end of numerical Error
John L. Gustafson, Ph.D.

 
Beyond Floating Point:  
Next generation computer arithmetic
John Gustafson

(Stanford lecture)

https://www.youtube.com/watch?v=aP0Y1uAA-2Y

https://www.youtube.com/watch?v=aP0Y1uAA-2Y

Arithmetic
is very difficult

to get right

• Same answer in single and double  
precision does not mean the answer  
is right

• If it matters you must prove every line  
containing arithmetic is correct

• Real arithmetic is not associative  

> ghci
Prelude> a = 0.1 + (0.2 + 0.3)
Prelude> a
0.6
Prelude> b = (0.1 + 0.2) + 0.3
Prelude> b
0.6000000000000001
Prelude> a == b
False

Most programmers think
that a+(b+c) is the same as (a+b)+c

$ python
Python 2.7.10
>>> x = (0.1 + 0.2) + 0.3
>>> y = 0.1 + (0.2 + 0.3)
>>> x==y
False
>>> print('%.17f' %x)
0.60000000000000009
>>> print('%.17f' %y)
0.59999999999999998

$ erl
Eshell V9.0 (abort with ^G)
1> X = (0.1+0.2) + 0.3.
0.6000000000000001
2> Y = 0.1+ (0.2 + 0.3).
0.6
3> X == Y.
false

Most programming languages think
that a+(b+c) differs from (a+b)+c

Value errors
• Program does not crash, but the values computed  

are incorrect or inaccurate

• How do we know if a program/value is incorrect if
we do not have a specification?

• Many programs have no specifications or specs
that are so imprecise as to be useless

• The specification might be incorrect  
and the tests and the program

Programmer
does not know

what to do

CRASH
- I call this “let it crash”  
- Somebody else will fix the error  
- Needs concurrency and links

What do you
do when you
receive an

error?

• Maintain an invariant

• Try to do something simpler

is that all?

What’s in a message?

• Inside black boxes are programs
• There are thousands of programming  

languages
• What language used is irrelevant
• The only important thing is what  

happens at the interface
• Two systems are the same if they 

obey observational equivalence  

• Interaction between components  
involves message passing

• There are very few ways to describe 
messages (JSON, XML)

• There are very very few formal ways to 
describe the valid sequences of  
messages (= protocols) between  
components (ASN.1) 
session types

 

Protocols are
contracts

Contracts
assign blame

C S

The client and server are
isolated by a socket - so it
should “in principle” be

easy to change either the
client or server, without
changing the other side

But it’s not easy

C S

Who describes
what is seen on the

wire?

C S

The contract checker
describes what is
seen on the wire.

CC

C SCC

How do
we describe
contracts?

