Goto; copenhagen

GOTO Copenhagen 2018 Conference Nov. 19 - 21

The Science of Sleep Poul Jennum

> Professor Danish Centre for Sleep Medicine University of Copenhagen Rigshospitalet Denmark

J Follow us @gotocph

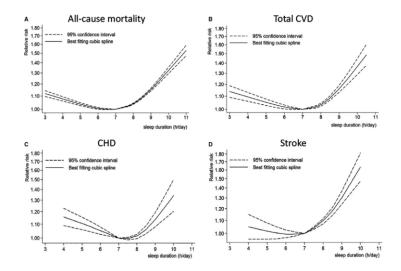
Function of sleep

Sleep plays an active role in processes such as

- synaptic plasticity and memory functions,
- emotional regulation,
- metabolic functions and energy balance,
- macromolecule biosynthesis,

- removal of toxic substances and metabolic waste, or
- prophylactic cellular maintenance.

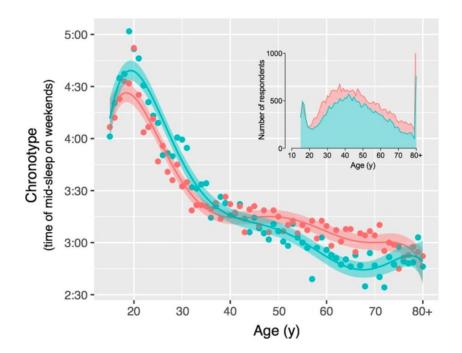
Default state of the organism and/or a state of adaptive inactivity.


Consequences of poor sleep

- Daytime sleepiness and fatigue
- Cognitive and memory impairment
- Stress and depressive mood
- Emotional and social interaction
- Reduced work efficiency
- Poor health:
 - Sedative behavior
 - Poor lifestyle
 - Morbidity and mortality

Short and long sleep are related to poorer health

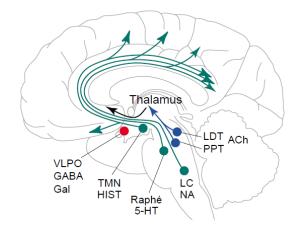
Relationship of Sleep Duration With All-Cause Mortality and Cardiovascular Events

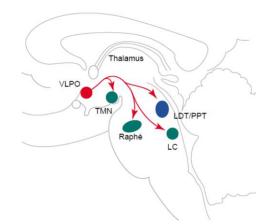

- Total 3 582 016 participants, including 241 107 cases of all-cause mortality
- For all-cause mortality, when sleep duration was <7 hours per day, the pooled relative risk (RR) was 1.06 (95% Cl, 1.04–1.07) per 1-hour reduction; when sleep duration was >7 hours per day, the pooled RR was 1.13 (95% Cl, 1.11–1.15) per 1-hour increment.
- For total cardiovascular disease, the pooled RR was 1.06 (95% CI, 1.03–1.08) per 1-hour reduction and 1.12 (95% CI, 1.08–1.16) per 1-hour increment of sleep duration.

Chronotype affect health


Late chronotype is related to:

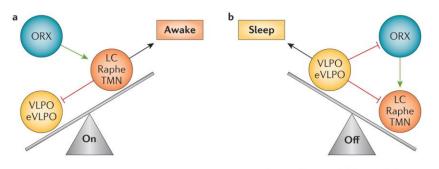
- Sedative behavior
- Smoking
- Obesity
- Mood
- Morbidity and mortality
- Low education and low income
- Societal costs




Sivertsen et al. Sleep. 2018 Nov 1;41(11). Knutson et al. Chronobiol Int.2018 Aug;35(8):1045-105, Fischer et al.PLoS One.2017 Jun 21;12(6):e0178782.

The Two Process model

Neurobiology of wakefulness -Ascending Reticular Activating System

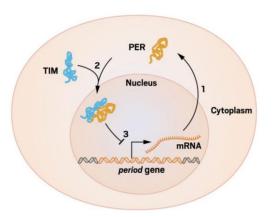


VLPO = Ventrolateral preoptic nucleus; TMN = Tuberomammillary nucleus; LDT = laterodorsal tegmental nucleus; PPT = pedunculopontine tegmental nucleus; LC = locus coeruleus; Ach = acetylcholine; NA = noradrenaline; 5-HT = serotonin; HIST = histamine; Gal = galanine

Saper CB, et al. Trends Neurosci 2001;24:726-31


The flip-flop switch model

Nature Reviews | Disease Primers


Saper, C. B., Scammell, T. E. & Lu, J.. Nature 437, 1257–1263 (2005),; Morin, C. M. et al. (2015) Nat. Rev. Dis. Primers

Circadian regulation

2017 Nobel prize for the discovery of molecular (gene) mechanism regulating the circadian clock

(Jeffrey Hall, Michael Rosbash & Michael Young)

Biological rhythm

Circadian

- Temperature, melatonin, cortisol
- Heart frequency, blood pressure

Circannual rhythm

• vitamin D, orexin/hypocretin

Determined by :

- Light-dark
- Day length

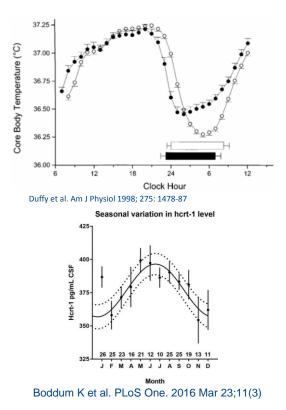
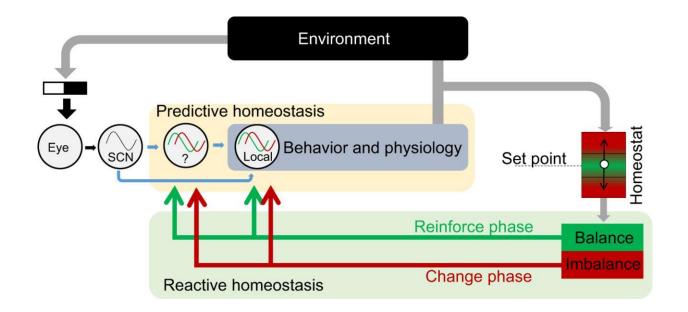
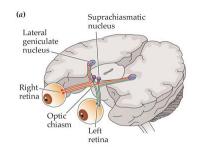
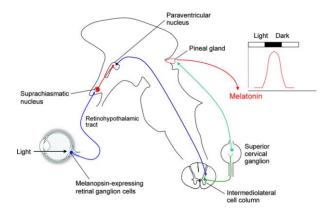
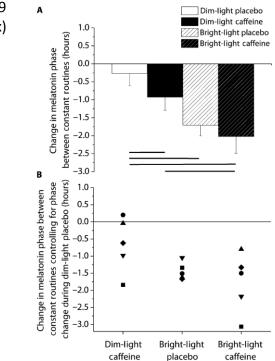



Illustration of how circadian clocks allow predictive homeostasis and receive reactive homeostatic feedback


Resetting of the clock


Light (blue 480 nm) effect on SCN

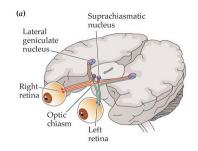
- Presented evening: phase delay
- Presented morning: reset or phase advance.
- Blue light daytime entrain wakefulness

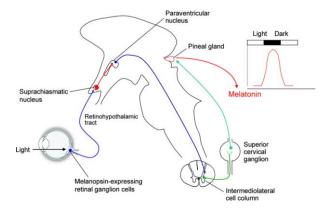

Melatonin

- Secreted from the pineal gland via innervation from the SCN (medullar projection
- Melatonin act on receptors in the SCN to phase-advance the biological clock

Effect of bright light and caffein on phase shift

Phase-shifting responses due to caffeine (2.9 mg/kg body mass) and bright light (3000 lux)


Resetting of the clock


Light (blue 480 nm) effect on SCN

- Presented evening: phase delay
- Presented morning: reset or phase advance.

Melatonin

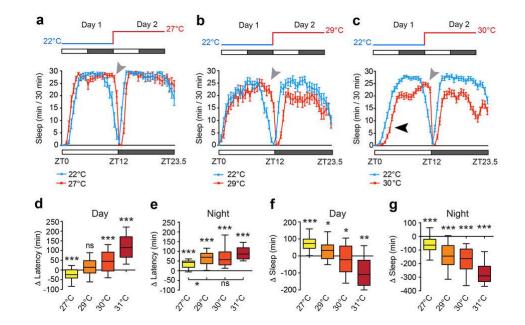
- secreted from the pineal gland via innervation from the SCN (medullar projection
- melatonin can act on receptors in the SCN to phase-advance the biological clock

How can we use this information

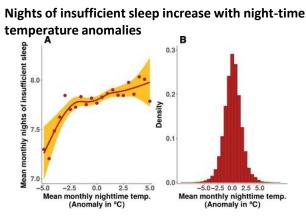
7

Factors that may affect sleep

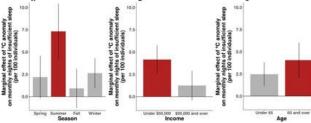
- Internal
 - Age
 - Circadian
 - Diseases (medical, psychiatric, sleep disorders)
 - Psychological
- External
 - Temperature
 - Noise
 - Light
 - Physical miljeu

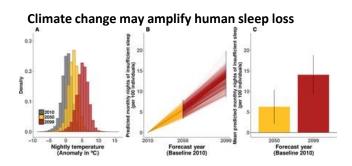

Light and sleep sleep

- Increased circadian sensitivity to evening light is associated with later circadian timing within both control and Delayed Sleep-Wake Phase (DSWPD) groups.
- Light emitted from Mobile and Computer screens can affect sleep quality
- There are currently no evidence that simply filtering blue light or simply removing relevant content improved sleep quality.

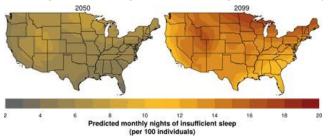

Watson et al. J Physiol 2018 oct. Bowler et al. Br J Psychol. 2018 Oct 5

Regulation of sleep by temperature (*Drosophila*)




Lamaze et al. Scientific Reports 7, Article number: 40304 (2017)

Night-time temperature and human sleep loss in a changing climate



Night-time temperature anomalies is most acute during the summer and among lower-income respondents and the elderly

Geographic dispersion of the predicted effects of climate change-induced night-time warming on human sleep

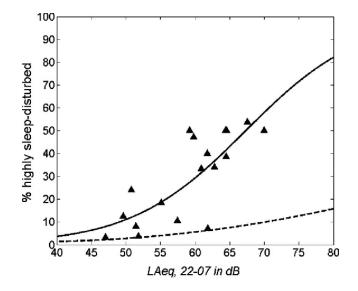
Obradovich et al. Sci Adv. 2017 May 26;3(5):e1601555

RESEARCH ARTICLE

The use of climate information to estimate future mortality from high ambient temperature: A systematic literature review

Michael Sanderson¹*, Katherine Arbuthnott^{2,3}, Sari Kovats², Shakoor Hajat², Pete Falloon¹

1 Met Office, Exeter, United Kingdom, 2 Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom, 3 Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom


Heat related mortality is of great concern for public health, and estimates of future mortality under a warming climate are important for planning of resources and possible adaptation measures.

PLoS One.2017 Jul 7;12(7)

External noise and sleep quality

Traffic /external noise is associated with

- Poor sleep quality including impaired mictrosleep pattern
- Insufficient sleep
- Use of psychotropic and sleep medication
- Higher Body Mass Index (children)
- Cardiovascular morbidity
- Brain impairment and cognitive decline (mice)

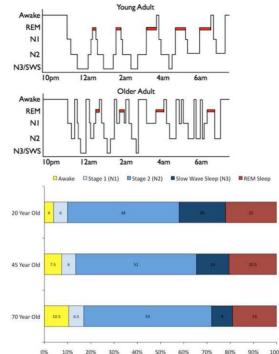
Evandt et al. Environ Health 2017 Oct 23;16(1):110 Rudzik et al. Sleep. 2018 Jul 1;41(7). Okokon et al. Environ Int. 2018 Oct;119:287-294 John son et al. Curr Epidemiol Rep. 2018 Jun;5(2):61-69' Weyde et al. Epidemiology.2018 Sep;29(5):729-738 Héritier et al. Int J Hyg Environ Health. 2018 Apr;221(3):556-563 Jafari et al. Exp Neurol. 2018 Oct;308:1-12

Road traffic noise and human health

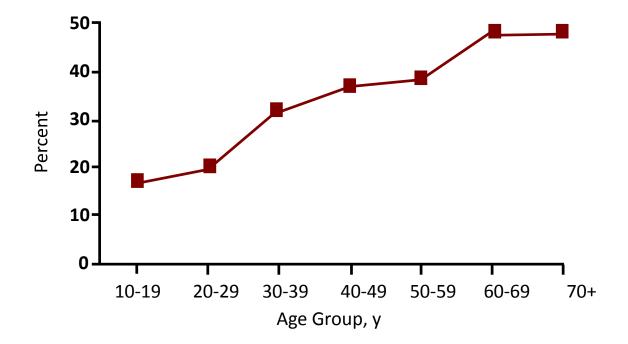
Total studies included

Author.	Location (city/province)	Type of study	Data source	Noise measurement/presentation	Measurement of effects
Rao et al. ^m	Vishakapatnam, Andhra Pradesh	Field, Survey	Journal article	Yes	Questionnaire
Rao et al.177	Vishukaputnam, Andhra Pradesh	Field, Survey	Journal article	Yes	Questionnaire
Rao et al (11)	Vishakapatsam, Andhra Pradesh	Field, Survey	Journal article	Yes	Questionnaire
Chakrahorty et al.111	Kolkata, West Bengal	Field, Survey	Journal article	Yes	Questionnaire, aufiometry
Mohan yi al. ¹¹¹	New Delhi	Field, Survey	Journal article	Yes	Questionnaire
Ingle et al.(**)	Jalgaon, Mahatashtra	Field, Survey	Conference proceeding	Measurement done. Not reported	Questionnaire, audiometry
Pachpande et al. ¹⁴⁹	Jalgaon, Maharashtra	Field, Survey.	Journal article	Not reported	Questionnaire, audiometry
Triputhi et al. ⁽¹⁴⁾	Ahmodabad, Gujarat	Field, Survey	Journal article	No measurement	Questionnaire
Baterjee et al. ¹¹⁵	Asansol, West Bengal	Field, Survey	Ownlibrary	Yes	Questionnaire
Nandarswar et al. ¹⁹¹	Nagput, Maharashira	Field, Survey	Conference proceeding	No measurement	Questionnaire
Agarwal et al. ⁽¹⁴⁾	Jaipur, Rajasthan	Field, Survey	Journal article	Yes	Questionnaire
Goowanni et al. ¹⁴⁴	Balasore, Orusa	Field, Survey	Journal article	Yes	Questionnaire
Mishra et al. ⁽²⁴⁾	New Delhi	Field, Survey	Journal article	Yes	Questionnaire
Wani et al. ²¹¹	Gwalior, Madhya Pradesh	Field, Survey	Journal article	Yes	Questionnaire
Agarwal or al. ¹¹¹	Jaipur, Rajasthan	Field, Survey	Journal article	Yes	Questionnaire
Goswami et al. ⁽¹⁴⁾	Balasore, Orissa	Field, Survey	Journal article	Yes	Questionnaire
Patil et al. ⁽¹⁰⁾	Antravati, Mabarashtra	Field, Survey	Journal article	No measurement	Questionnaire

Quality estimates of studies

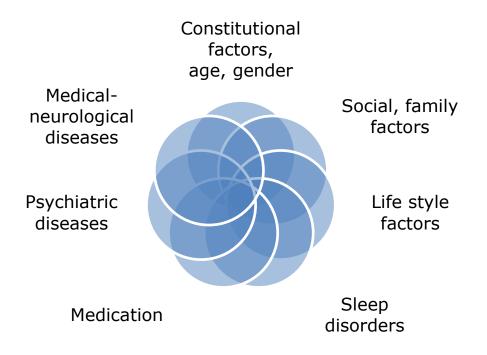

Author	Neady population well defined	Exposure is well defined	Declaration of statistical methods	Sample size?	Random sample selection	Exposure effect studies/ curve
Rao et al. ¹⁴	Yes	Yes	Yes	Large (n=1195)	Yes	Yes
Rao er al.101	Yes	Yes	Yes	Latge (n=1195)	Yes	Yes
Rao et al. ⁽¹⁾	Yes	New	Yes	Large (#=1195)	Yes	Yes
Chakraborty et al.111	Yes	Yes	Yes	Large (n=1100)	Yes	Yes
Moham et al.228	Yes	No	No	Medium (m-175)	Yes	No
Ingle et al. ⁽⁴⁾	Not reported	No	No	Not reported	Subjects spend atleast 14-16hrs at home	No
Pachpande et al. ¹⁴	Yes	No	No	Noi reported	School teachers and Students	Yes including audiometri-
Tripathi et al.775	Not reported	No.	No	Medium (ar-86)	Traffic policy	No
Banerjee et al.118	Yes.	Yes	Yes	Latge (n=869)	Yes	Yes
Nundanwar et al.141	Yes	No	No	Large (n=378)	Yes	No
Agarwal et al.(19)	Not reported	Yes	Yes	Large (a=450)	Yes	Yes
Goswami et al.201	Yes	Yes	No	Large (n=212)	Yes	Yes. No carve
Mishra et al.221	Not reported	Ves	No	Large (#=350)	Yes	No
Wani er al.101	Yes	Yes	No	Medium (n=100)	Yes	Yes. No curve
Agarwal et al.771	Yes	Yes	No	Latge (#=550)	Yes	Yes
Goowami et al. ¹⁴⁰	Not reported	Yes	No	Medium (m-136)	Yes	No
Public at at PT	Yes	No	No	Large (n=500)	School, shopkeepers	No

- 1. Road noise may cause sleep disturbances.
- 2. Road noise is a cause for annoyance to a variety of degree among the respondents.


Sleep changes with age

Decreased sleep consolidation

- less sleep efficiency
- less sleep spindles, less N3
- Increased sleep disruption
- Sleep fragmentation/arousals
- Sleep-breathing disturbances
- Periodic periodic limb movements and REM sleep Behavior Disorder
- Medical diseases and medication
- Increased daytime sleep
- Napping
- Polyphasic ultradian rhythm

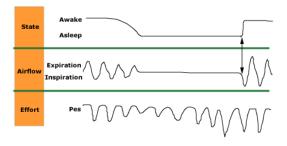

Complaints of sleep problems with age

Karacan I et al. Soc Sci Med. 1976;10:239-244.

"Trouble With Sleeping" Assessed in a comprehensive survey of 1645 individuals in Alachua County, Florida

Factors involved in sleep disturbances in the elderly

Indicators of hyperarousal in insomnia



Hallmarks of hyperarousal

Nature Reviews | Disease Primers

Sleep-related breathing disorders

- Sleep apnea affects >10% of the adult population
- Causes significant personal and societal consequences:
 - Increased morbidity and mortality
 - Mental and social problems
 - Health care costs
- Treatable

Neurological disorders associated with sleep problems causing sleep disturbances

- Neurodegenerative disorders
 - Parkinson's and Alzheimer
- Stroke
- Hereditary diseases
- Epilepsy with nocturnal fits
- Headache
- Pain
- Sleep disorders, e.g.
 - Narcolepsy,
 - sleep related movement disorders,
 - Periodic legs movements,
 - REM and NREM parasomnias

Mayer, Jennum, Sleep Med Rev. 2011;15(6):369-78

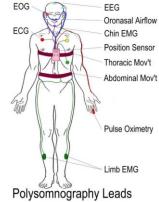
Societal and industrial potential for improving sleep

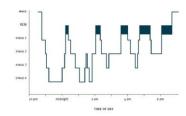
- **Personal** (wearable devices, personal behavior)
- Architecture (housing, bedroom, smart homes, light)
- Work schedules (long, short, irregular shifts)
- **Technology** (health, personal and wearable devices, micro bed environment)
- Health (sleep health, personalized medicine)
- Industrial (information technologies, furniture's)

. . .

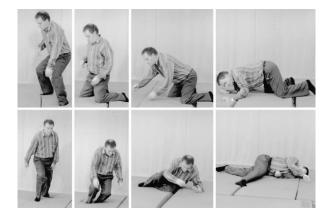
Polygraphic measures during wake and sleep

Macrosleep (sleep pattern)

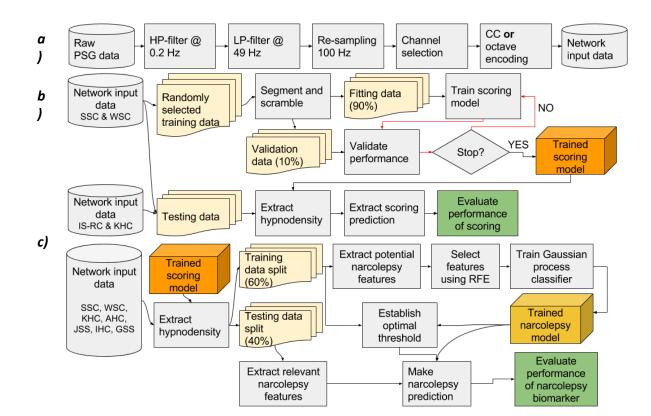

- Total Sleep time
- Sleep distribution
- Arousals and awakenings
- Sleep stability and transitions


Microsleep

• Electroencephalographic morphology (e.g. sleep spindles etc.)


Physiological variables

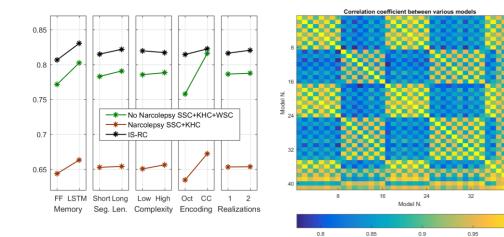
- Respiration
- Activity
- Sound
- Cardiac features (pulse, rhythm, blood pressure)
- Oxygen and CO2
- humidity


Narcolepsy

Narcolepsy is a disabling brain disease, characterized by sleep-wake dissociation:

- Excessive daytime sleepiness
- Hypnogogic and hypnopompic hallucinations and vivis dreams
- Cataplexy provoked by emotional stimuli
- Sleep paralysis
- Chronic, debut in childhood, adolescent, chronic
- Causes significant personal, familiar and societal burden.
- Primarily due to selective destruction of hypocretinergic neurons in hypothalamus

Data selection and pre-processing (N>3000) Samples from Asia, US, Europe



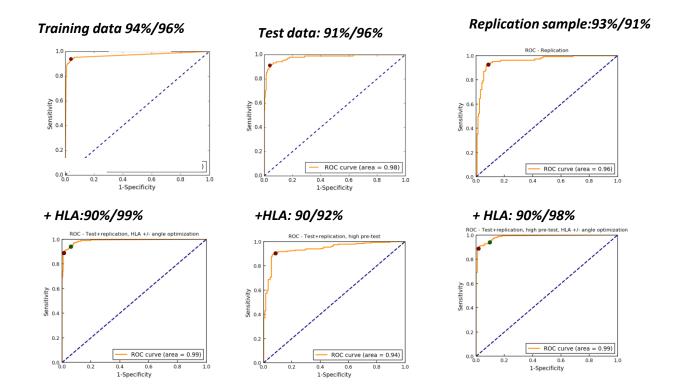
Inter-scorer Reliability Results

Individual and overall scorer performance, expressed as accuracy (upper Table) and Cohen's kappa (lower Table). Both accuracy and Cohen's kappa are presented as both with (biased) and without (unbiased) the assessed scorer included in the consensus standard in a leave-one-out fashion. Accuracy is expressed in percent, and Cohen's kappa is a ratio, and therefore unitless. T-statistics and p-values corresponds to the paired t-test between the unbiased predictions for each scorer against the model predictions on the same consensus.

	Overall	Scorer 1	Scorer 2	Scorer 3	Scorer 4	Scorer 5	Scorer 6
Accuracy (%), Biased	81.3±3.0	82.4±6.1	84.6±5.5	74.1±7.9	85.4±5.7	83.1±9.4	78.3±8.9
Accuracy (%), unbiased	76.0±3.2	77.3±6.3	79.1±6.3	69.0±8.0	79.7±6.5	77.8±9.6	72.9±9.2
Model accuracy (%) on concensus	-	85.1±4.9	83.8±5.0	86.5±4.3	84.3±4.7	85.6±4.7	87.0±4.5
t-stat (p-value)	-	9.5 (3.8×10 ⁻¹⁴)	6.6 (7.5×10 ⁻⁹)	18.3 (6.0×10 ⁻²⁸)	6.7 (4.7×10 ⁻⁹)	6.4 (1.7×10⁻ଃ)	12.2 (7.5×10 ⁻¹⁹)
Cohen's kappa, biased	61.0±6.8	63.6±12.2	68.4±10.5	45.6±19.7	69.6±13.2	64.5±20.9	54.5±19.8
Cohens' kappa, unbiased	57.7±6.1	61.3±11.2	64.6±10.3	43.5±19.2	64.6±13.1	60.9±16.9	51.6±16.7
Model kappa on concensus	-	74.3±12.3	72.4±12.1	76.0±11.8	72.7±12.0	74.7±12.1	76.6±12.2
t-stat (p-value)	-	9.5 (4.6×10 ⁻¹⁴)	7.1 (7.9×10 ⁻¹⁰)	15.4 (7.0×10 ⁻²⁴)	6.6 (6.4×10 ⁻⁹)	7.1 (9.2×10 ⁻¹⁰)	13.2 (2.0×10 ⁻²⁰)


Optimizing Machine Learning performance for sleep staging:

40


1

Narcoleptic subject versus normal subject: narcolepsy show higher fragmentation

Such sleep staging model outputs could be used as a biomarker for the diagnosis of narcolepsy using a standard nocturnal PSG rather than the MSLT.

Final predictions for creating a separate narcolepsy classifier from each of the sleep scoring models used in the final implementation

Conclusion

- The brain regulates wake and sleep via to mutual physiological mechanism homeostatic regulation (wake-sleep) and circadian regulation
- Sleep constitute a core physiologic mechanism for regulatory function.
- Sleep and circadian regulation are sensitive to external factors (like temperature, light, noise, physical environment), constitutional, psychological factors and diseases.
- Significant potential for improving sleep and health: personal, micro-bed, architecture and environmental factors
- Significant potential for future application and implementation