
Good ideas
that

we forgot

Joe Armstrong

My goals

• To remind you of the important things
worth knowing

• Identify the stuff worth learning

• Identify some problems worth solving 
 
[note: this is a very biased view]

What ideas has we forgotten?

Computer
science

101

#1 - Observational Equivalence

• Two systems are equivalent if they cannot be
distinguished on the basis of their observable
inputs and outputs.

Inputs Outputs

Need Several languages:

- Describe the Inputs and
outputs

- Describe Computations
- Describe Connections
- Describe sequences of

events

#2 - Isolation
• Two systems are isolated if what happens in

one system cannot influence what happens in
the other system.

Messages

- Messages should never crash the system
- Messaging is inevitable
- The sender never knows if the message is received

#3 - Composition
• Things are composable if they can be combined

in such a way that the combination behaves in a
similar manner to the individual parts.

#4 - Causality
• Effect Follows Cause

Messages

A B
- B does not know how A IS only how it WAS
- A does not know if B received the last

message it sent

#5 - Physics
• For a computation to take place
all the data and the program must
be at the same place in space time

So you can move the data or the
program or both.

Tip: get all the data you need and
the program to one place before
doing a computation

Violating any one of these principles
will lead to brittle software that may

appear to work but will one day fail in
ways that are difficult to understand

Part 2
Things to learn

which you might have forgotten
or not known about

• 2 great papers to read
• 4 old tools to learn
• 4 really bad things
• 3 great books to read
• 7 reasons why software is difficult now
• 10 reasons why software was easier back in the day
• 1 fun programming exercise
• 8 great machines from the past

  
 … and …

80 things to do

… • 3 performance improvements
• 5+ YouTube videos to watch
• 6 things not to do
• 5 sins
• 4 languages to learn
• 4 great forgotten ideas
• 6 areas to research
• 2 dangers
• 4 ideas that are obvious now but strange at first
• 2 fantastic programs to try

80

2 great papers to read

• A Plea for Lean Software - Niklaus Wirth

• The Emperor’s old clothes - ACM Turing award
lecture - Tony Hoare

4 old tools to learn

• emacs (vi)

• bash

• make

• shell 

3 great books to read

1 fun programming exercise

Serious fun - might cause

your brain to melt

YouTube videos to watch

• The computer revolution has not happened yet  
Alan Kay

• Computers for Cynics 
Ted Nelson

Part 4

Four great forgotten ideas

Flow Based
Programming

Flow Based Programming

• Invented by John Paul Morrison in the early 1970’s

• Programming by “placing objects next to each
other”

• Binary distribution of components

• Account for all packets

EndStart F1 F2 F3

Start F1

F3 F4

EndSplit F2 Merge

{ok, X} | {error,W}

F(X)
{ok, F(X)}

{error, …}}

{error,W}

Errors are forwarded though the network
All “jobs” are numbered

1,2,3,… {1,ok,…},{2,error,…}

The input is a stream of messages
1,2,3,4

The output is a stream of replies

No packets are lost

• We’re building apps and websites

• We should be building components that can be
wired together

Pipes

Pipes

• The output of my program should be the input
to your program

• A | B | C

• Text-flows across the boundary

• Killed by GUIs and Apps (Apps are not pipeable)

“Doug has been explicit in saying
that he very nearly exercised
managerial control to get pipes
installed.”

“Point 1's garden hose connection
analogy, though, is the one that ultimately
whacked us on the head to best effect.”

http://cm.bell-labs.com/cm/cs/who/dmr/mdmpipe.html

M.Douglas McIIroy

http://cm.bell-labs.com/cm/cs/who/dmr/mdmpipe.html

Linda Tuple
Spaces

Linda Tuple Spaces

• Shared Whiteboard

• Gelernter and Carriero 1986

• More declarative than message passing

• We just create jobs and don’t know who will do
them

Tuple Space Operations

• out (adds a tuple to the store)

• in (reads a tuple and removes it from the store)

• rd (reads a tuple)

• eval (create a new parallel process)

Hypertext

Hypertext
• 1960’s - Ted Nelson - Xanadu (first approximation to

Xanadu was 1998)

• 1962 - Douglas Engelbart - NLS (oN Line System)

• 1963 - Ted Nelson coins the word “Hypertext”

• 1980 - Tim Berners Lee makes a simple hypertext system

• 1987 - TBL Makes WWW

• 1987 - Apple makes Hypercard

• WWW is not hypertext

• HTML is not hypertext

• HTML links are not hypertext links

Page not found

404

All web pages are
not writable

How to correct a typo
on a web page

Correcting a typo (1)

1. Learn GIT

2. Locate the program that creates the page

3. Locate the typo in the source code

4. Correct the typo and test

5. Send a push request to the maintainer of the site

Correcting a typo (2)

1. Select the text

2. Type in the correction

3. All people observing the page see the change
after a propagation delay

Xanadu
• Ted Nelson’s Hypertext system

• https://en.wikipedia.org/wiki/
Project_Xanadu#Original_17_rules

• No data is ever lost - no 404’s

• All data is secure

• Every user can read write and store data

• …

https://en.wikipedia.org/wiki/Project_Xanadu#Original_17_rules

Two fun
hobby projects
to try at home

and change the world

Link to a content hash
not a name

name

• Go to ANY website
• Request a content by SHA256 (or MD5)
• Immune to people-in-the-middle
• Return data or “a nearer website”

• https://datproject.org/
• https://ipfs.io/

Projects
• Kademlia
• Chord

Theory

Project 1

http://www.apple.com
https://datproject.org/

Elastic Links
Hypertext links

should be bi-directional

Links should not break if you
move an endpoint

Project 2

How do you implement this
at planetary scale?

The endt

Programs that are not secure and cannot be
remotely controlled should not be written

All Apps should be scriptable

All Apps should be composable

Finally

