The Why of Go v2

Brave New World Edition

GOTO Copenhagen 2018

Carmen Andoh (@carma trocity

Bryan Cantrill 9y
f @bcantrill

How about a conference called "In
Retrospect” in which presenters revisit talks

they've given years prior -- and describe how
their thinking has evolved since?

10:01 PM - 28 Jun 2018

1,031 Retweets 5,696 Likes @ ﬁ% Q ‘f 0 o @ ‘&i %

QO 145 11 1.0K Q) 57K & v

“Imagine you are a
software engineer from
the year 1983

who happened upon a
time machine

and traveled to today.”

(80s Dolorian time
machines are the raddest
time machines)

1556
M
1558
\d
1360
’
1962
\d
1564
\d
1966
\
1568
’
1370
’
1372

\d
1574

You

Genealogy of Programming Languages Fo=
1956-1983

Lisp

Scheme

>

T are -

. here

1982

1984 Sr:/lL Con:wr;wn Lisp

Algol 60

Smalltalk

o (K'&R)

Smalltalk 80

Sod s

COBOL
LT
Pas'cal Prolog
Fortran 77
Ada 83

v
1524
’
1386
\
1588
A
1950
\
1952
\
1554
'
1956
\d
1558
v
2000
\J
2002
’
2004
»
2006
\
2008
’
2010
\
2012

*
2014

SML

Caml

oCaml

Scheme R5RS

Rust ~

Common Lisp S
Java
Haskell 98 C++ (1S0O)
c# - Python 2.0
C#2.0 Java 5
Go
Haskell 2010
" Swift * Java 8

Eiffel Perl
Tcl
Python Fortran 90
JavaScript "Ruby Perl 5

Genealogy of
Programming
Languages
1956-2015

- Transistors
- (thousands)

- Single-thread
- (SpeciNT)

: :. Frequency
T (M)

1975 1980 1585 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Balten

Dotted line extrapolations by C. Moore

Programming S. L. Graham, R. L. Rivest

® Techniques Editors SECOND EDITION
Communicating THE
Sequential Processes
C.AR.Hoare
Belfas, Northern frcland 8\

Op er aﬁ-llg SYSfelll This paper suggests that input and output are basic \\ G/\

primitives of programming and that parallel
composition of communicating sequential processes is a

N
VR fundamental program structuring method. When OG G
(s Q\X,_\(\{ combined with a development of Dijkstra’s guarded PR RAMMIN
Y o P command, these concepts are surprisingly versatile.
> _“‘\y Their use is illustrated by sample solutions of a variety L ANGUAGE

b’
[/ o) of familiar programming exercises,
iy] ¢ Key Words and Phrases: programming,
\ % programming languages, ;en')gnmmlng Ipvimiliveu. BRIAN W KERNIGHAN
‘ g program structures, parallel programming, concurrency, “NNIS M 2
input, output, guarded commands, nondeterminacy, sl il
{ coroutines, procedures, multiple entries, multiple exits, PRENTICE HALL SOFTWARE SERIES
R € I data representations, recursion, conditional

critical regions, monitors, iterative arrays
CR Categorles: 4.20, 422, 4.32

Original Value
0 0 1 F A c 5 o
CEEs PEeE Tael IIIM AEdE IAEs IEdE OHEH
77 |l 1111
B{L|DfE RN @aEn
F B D

v
1524
’
1386
\
1588
A
1950
\
1952
\
1554
'
1956
\d
1558
v
2000
\J
2002
’
2004
»
2006
\
2008
’
2010
\
2012

*
2014

SML

Caml

oCaml

Scheme R5RS

Rust ~

Common Lisp S
Java
Haskell 98 C++ (1S0O)
c# - Python 2.0
C#2.0 Java 5
Go
Haskell 2010
" Swift * Java 8

Eiffel Perl
Tcl
Python Fortran 90
JavaScript "Ruby Perl 5

Genealogy of
Programming
Languages
1956-2015

"What's that”™ snapped the King
And he looked down the stack
And he saw at the bottom, a turtle named Mack

i /
il

PROTOCOLS

IMAP/POP3

DOVECOT m

- QuaLcomn
Eﬂi

WSGl iraffic? 4
” LIGHTTPD

Nl

CLOUD COMPUTING i CLONING STATISTICS

OpenNebula .é. n
a | 5 :
Fiynn 88

Pocchiee U '°8 I Smar “’3

CLOUD AND VIRTUALIZATION

FOREMAN n @ q i PIWIK Goaccess
ol Cl ill .-
onezilla : E \(k.lﬁ/\.l m

VAYAY

M, ; MONITORING

g e N - ZABBIX \k | Adagios [
| =R o i m _ Nagios Qﬂ.

P 7 ﬁ&mg i
| TSRS — f : Linux Dash alerta

CLOUD ORCHESTRATION ~ § rsnanshet : - .

=RIINNFCK —

PROTOCOLS

IMAP/POP3

CLOUD COMPUTING

0N
ooy A ° curus)

: [(o I:I
- QuaLcomww :

m OpenNebula
y
RRIR
tsuru) ISR ,:8:.

-HTI'P udstack ?An:mpel "
NGiMX L) I :

O OPENSHIFT LAAAIC

A,(a.. _ r:oA...v .%
: dwrchee Freefil HZZZZ:ZIZ:ZIZii::ﬂ:iiZZ:IZZ:IZZ:IZZII

CLOUD ORCHESTRATION

’ Overcast ZRUNDECK

(% saLtsTack >bOSh

N

wsal lIGHI

MailHo E
ﬂ ”) - m"lx

Lol - [

PN
Ll

o Ml st
pE s

. SNEBU Q

SUPPORT SOFTWARE

STATISTICS

@ \ ANV M—

Clonezilla

!k

&3 webminllm el

@rotn
VESTA

LB : o MONITORING

loglo mnen Cn

seves (XN

POWERDNS GUI

| EER <4 [T
|] Nesios gl

CALAMAR

backup LSYQYS vl

Linux Dash alerta

| SR *icinca 6& n s

: : ® Froxior %3 Easy-Wi
Cabot OMD ' é O virucnmin: g pesthesdmis
P e RN

duplicity kvmBackup

Attic = RIEMANN pymmwws ;-
- WEBMAILS

oot Monitorix

duply

. i Selena - Zentss i

rdiff-backup ﬁ - il :
s 3 P :

modooo @ 42 BAN

& maipie (1TADELE
~

IS D o

EDITORS

(N neovim n {coder}
@
Brackes m {2

jotgit CHmm “

vor) BELEIETY sublime Text :

REPOSITORIES

Dotdeb ¥ EcRero

o3 Em

ersinimy

GNU’s Not Unix Project

™
O
o
e

Vaﬁm(, hut é\cc"km:}

CERN DD/OC Tim Berners-Lee, CERN/DD

Information Management: A Proposal March 1989

~ Information Management: A Proposal

Abstract

This proposal concerns the management of general information about accelerators and cxpeniments at
CERN. It discusses the problems of loss of information about complex evolving systems and derives a

THE CATHEBRAL

t".\,p
"] A fl ‘ MND THE
N P Wi
G > |\)2 . i ;
. _’,'2:’, .< g ' = !' ER\CS.RAYNO.ON? 2 .
() .@ AT TR e
' LSPl isolokion .. 5

B (000 5
oo ANy F‘Eocrszuces ok /\'C
ON PEOJECTS THEY ~ennerz
NEED ~WANT
/@ N
w»ui7 /

EVERY Godd PIECENC /
OF WORK I \?
577»&75 ~
SCRRTCH NG Paicth i
Mp‘, F"D'“G
“ 14 by ?R

ITCH

Bell Labs: A Hive of Invention

A selection of its most important innovations in the decades leading up to the breakup of its parent company, AT&T, in 1984, and how they helped lead to some of the latest technologies.

1940s 1950s 1951 Direct-distance dialing 1960s 1962 Digital transmission, 1970s and '80s
No operator necessary for switching First digital transmis-
long-distance calls. sion of multiple voice signals.

P cgn?tm"dé?;Zﬁ: :?:éﬁ:f:?:ﬁgﬁ |] 1960-62 First communications satellites 1969-72 UNIX operating system

b t'oﬁ b Hisalln Rarlea v A N, 1954 Solar cells First use of Echo is first to reflect a voice signal from and C programming language
; e?' ILab s in N evap\;lorek' agd 4 ecvh 3 n'}j:al) eul Wiy the sun's energy to create a coast to coast; Telstar | shows an orbiting Makes large-scale networking of [

by a teletypewriter i Sranaformed eloctro m¥: e practical level of electricity. relay can amplify and resend multiple varied computing systems, and

New Hampshire. phone and TV transmissions. the Internet, practical.

R . -] —

1956 First transatlantic 1976 Fiber-optic network

“bl'l"m':m"“'cl"' IMSC":W;'“‘""“ theory telephone cable 1962 Paging system Bellboy pager is | The first test of Bell Labs'
poblie phone service alculates maximum Designed and implemented introduced at the Seattie World's Fair. | experimental lightwave [

~fT\()SL three subscrib- capacity for any commu- = by Bell Labs; could carry up communication system

5 per city could make nications system and —J J 10 36 simultaneous calls. 1963 Touch-tone telephone | begins in Atlanta. Information

s at one time; each shoy/s how to send Enables voice mail and call centers. | is carried by pulses of light.

er's phone apparatus digital messages 1957 Digitized music First

ks aln;)%ﬂﬂ%g Eneasglfzg“gg{aecr;%;g‘s}. demonstrations of digitized and - 1965 Evidence of the Big Bang 1978 First commercial cellular network

: computer-synthesized music. Discovery of cosmic background Installed by Bell Labs in Chicage. |
sion and cryptography. radiation from beyond the Milky Way. 2 S
\
1947 Cellular 1958 The laser “Light Amplification by Stimulated 1969 Charge-coupled device 1979 Digital signal processor
tlephone technology Emission of Radiation” was described in a Bell A solid-state chip that transforms An essential component of cellphones,

| Labs paper was the
propose a network of
interlocking cell sites
J users as they maove,
g their calls from one
le to another without
pping the connection.

The Murray Hill,
N.J., buildings
opened in 1941,

Labs paper. It is crucial for communications,
surgical and DVD technologies.

patterns of light into information. Vital modems, PCs and video game systems.
to digital cameras, high-definition
television, medical endoscopes

and video conferencing.

1980 Digital cellular phone
Better sound quality, greater
channel capacity, lower cost.

Bell Labs opened
in Holmdel, N.J.,
in 1962, It was
vacated in 2007.

1982 Fractional quantum hall
effect Discovery of a new
state of subatomic matter that
wins the Nobel Prize.

LEFT AND CENTER PHOTOS COURTESY OF ALCATEL-LUCENT USA INC. AND THE AT&T ARCHIVES AN

Bell Labs: A Hive of Invention

A selection of its most important innovations in the decades leading up to the breakup of its parent company, AT&T, in 1984, and how they helped lead to some of the latest technologies.

1940s 1950s 1951 Direct-distance dialing 1960s 1962 Digital transmission, 1970s and '80s
No operator necessary for switching First digital transmis-
long-distance calls. sion of multiple voice signals. ‘
polakedoradzessmst ave7 The st] 1960-62 First communications satellites 1969-72 UNIX operating system
>ratioz of';gcomputer Replaced vacuum tube s‘ N\ 1954 Solar cells First use of Echo is first to reflect a voice signal from and C programming language
gell L4bsin New York' and mechanicalrelave: the sun's energy to create a coast to coast; Telstar | shows an orbiting Makes large-scale networking of
by a teletypewiriter |n. transformed electromil:s' practical level of electricity. relay can amplify and resend multiple varied computing systems, and
New Hampshire. phone and TV transmissions. the Internet, practical.
A B
1956 First transatlantic 1976 Fiber-optic network
“bl'l"mﬁm"“"’lm IMSC'TN;'“‘""“ theory telephone cable 1962 Paging system Bellboy pager is | The first test of Bell Labs'
poblie phone service alculates maximum Designed and implemented introduced at the Seattle World's Fair, experimental lightwave [
~mosl. three subscrib- capacity for any commu- by Bell Labs; could carry up communication system
5 per city could make nications system and —J) 10 36 simultaneous calls. 1963 Touch-tone teleph A begins in Atlanta. Information
s at one time; each shoy/s how to send Enables voice mail and call centers. | is carried by pulses of light.
er's phone apparatus digital messages
weighed almost 80 essentially error-free 1957 Digitized music First
pounds, Enabled data compres- demonstrations of digitized and e 1965 Evidence of the Big Bang 1978 First commercial cellular network
: computer-synthesized music. Discovery of cosmic background Installed by Bell Labs in Chicage. |
sion and cryptography. radiation from beyond the Milky Way. 2 S
A
1947 Cellular 1958 The laser “Light Amplification by Stimulated 1969 Charge-coupled device 1979 Digital signal processor
tlephone technology Emission of Radiation™ was described in a Bell A solid-state chip that transforms An essential component of cellphones,

| Labs paper was the
propose a network of
interlocking cell sites
J users as they maove,
g their calls from one
le to another without
pping the connection.

The Musrray Hill, Labs paper. It is crucial for communications. patterns of light into information. Vital modems, PCs and video game systems.
N.J., buildings surgical and DVD technologies. to digital cameras, high-definition
opened in 1941, television, medical endoscopes

and video conferencing.

1980 Digital cellular phone
Better sound quality, greater
channel capacity, lower cost.

Bell Labs opened
in Holmdel, N.J.,
in 1962, It was
vacated in 2007.

1982 Fractional quantum hall
effect Discovery of a new
state of subatomic matter that
wins the Nobel Prize.

LEFT AND CENTER PHOTOS COURTESY OF ALCATEL-LUCENT USA INC. AND THE AT&T ARCHIVES AN

L

‘i’

’

‘

&

%
P
- o

T

Criticisms of Go

too simple / lack of syntactic sugar
no generics

bad dependency management
stuck in 70/80's

error handling

no unused imports
too opinionated

too verbose

no ternary operator
no macros or
templates

https://github.com/ksimka/qgo-is-not-good

https://github.com/ksimka/go-is-not-good

“Go programming language was conceived as an answer to
some of the problems we were seeing developing software
Infrastructure at Google. The computing landscape today is
almost unrelated to the environment in which the languages
being used, mostly C++, Java, and Python, had been created.
The problems introduced by multicore processors,
networked systems, massive computation clusters, and
the web programming model were being worked around
rather than addressed head-on.

“Go programming language was conceived as an answer to
some of the problems we were seeing developing software
Infrastructure at Google. The computing landscape today is
almost unrelated to the environment in which the languages
being used, mostly C++, Java, and Python, had been created.
The problems introduced by multicore processors,
networked systems, massive computation clusters, and
the web programming model were being worked around
rather than addressed head-on.

“Go programming language was conceived as an answer to
some of the problems we were seeing developing software
Infrastructure at Google. The computing landscape today is
almost unrelated to the environment in which the languages
being used, mostly C++, Java, and Python, had been created.
The problems introduced by multicore processors,
networked systems, massive computation clusters, and
the web programming model were being worked around
rather than addressed head-on.

“Go programming language was conceived as an answer to
some of the problems we were seeing developing software
Infrastructure at Google. The computing landscape today is
almost unrelated to the environment in which the languages
being used, mostly C++, Java, and Python, had been created.
The problems introduced by multicore processors,
networked systems, massive computation clusters, and
the web programming model were being worked around
rather than addressed head-on.

“Go programming language was conceived as an answer to
some of the problems we were seeing developing software
Infrastructure at Google. The computing landscape today is
almost unrelated to the environment in which the languages
being used, mostly C++, Java, and Python, had been created.
The problems introduced by multicore processors,
networked systems, massive computation clusters, and
the web programming model were being worked around
rather than addressed head-on.

Moreover, the scale has changed: today’s server programs
comprise tens of millions of lines of code, are worked on by
hundreds or even thousands of programmers, and are
updated literally every day. To make matters worse, build time
have stretched to many minutes, even hours, even
languages,on large compilation clusters,”

Moreover, the scale has changed: today’s server programs
comprise tens of millions of lines of code, are worked on by
hundreds or even thousands of programmers, and are
updated literally every day. To make matters worse, build time
has stretched to many minutes, even hours, on large
compilation clusters”

Moreover, the scale has changed: today’s server programs
comprise tens of millions of lines of code, are worked on by
hundreds or even thousands of programmers, and are
updated literally every day. To make matters worse, build time
has stretched to many minutes, even hours, on large
compilation clusters”

multicore processors
networked systems
massive computation
clusters

web programming model

e hundreds or even
thousands of programmers
e large compilation clusters

Go

80s 90s 2000 2005 2010 2018

Go
o

sagengue

| aremyos

2018

2010

2005

90s 2000

80s

Go
o

sagenguen

| aremyos

andwo)
3 aJemMpJeH

2018

2010

2005

90s 2000

80s

E

Go
o

sagenguen
| aremyos

aindwon
3 Em?:m_._

2018

2010

2005

90s 2000

80s

Designers

Robert Griesemer Rob Pike Ken Thompson

V8 lavaScriptengine, Java HotSpot VM UNIX, Plan S, UTF-8 UNIX, Plan 9, B language, UTF-8

Robert Griesemer, Rob Pike, Ken Thompson

5 % C (68-73) Go
£ @ UTF-8 =
» S &
o
Plan 9
80s 90s 2000 2005 2010 2018

THE

UNIX

PROGRAMMING
ENVIRONMENT

Brian W.Kernighan
Rob Pike

The Practloe of

1969

1971 to 1973

1974 to 1975

1978

1979

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

1990
1991

1992

1993
1994
1995
1996
1997
1998
1999
2000

2001 to 2004
2005
2006 to 2007
2008
2009
2010
2011
2012 to 2015
2016
2017

Unix-like systems

Linux 0.0.1

Linux
0.95to 1.2.x

NexTSTEP/
OPENSTEP
1.0 to 4.0

Mac OS X
Server

@amed PDP-7 operating systeD

Unix
Version 1 to 4

Unix
Version 8

(last versions
rom
Bell Labs)

BSD Net/2

386BSD

FreeBSD
1.0 to
2.2.x

Open source

Mixed/shared source

Ooon

Closed source

macOS
10.0to 10.12

(Darwin
1.2.1 to 17)

FreeBSD
S OitolR2

PWB/Unix
<& No future releases
BSD
1.0to 2.0
BSD
S System Il
BSD 4.2 SunOS
lto 1.1 System V
R1 to R2
— ; (————1—
—— l SCO Xenix
AIX V/286 System V
Sunos 1.0 R3 HP-UX
1.2to0 3.0 S(\?’;?axsesr\ix 1.0to 1.2
HP-UX
SVenY 2.0t03.0
SCO Xenix
BSD Net/1 /386
——
HP-UX
NetBSD 6toll
S e SCO_UNKX UnixWare
e 3.2.4 1.xto 2.x
& (System V.
Release 2 4.2)
NetBSD o
penBSD o S
151 0 12 1.0to2.2 g Solaris
5.0 to 5.04 | 21to9
NetBSD 1.3 I
Oope'\Server
5.0.5to 5.0.7
3:0=7.2
UnixWare '
(Sysrarm v
ystem
R5)
Solaris
10
OpenServer HP-UX
DragonFly. 6.x 11li+
BSD
1.0to 4.8 I OpenSolaris
& derivatives
% (ilumos, etc.)
% Solaris
abakFoalil)
W\ =
10.x

1969

1971 to 1973

1974 to 1975

1978

1979

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

1990
1991

1992

1993
1994
1995
1996
1997
1998
1999
2000

2001 to 2004
2005
2006 to 2007
2008
2009
2010
2011
2012to 2015
2016
2017

Robert Griesemer, Rob Pike, Ken Thompson

= % 68-73) Go
E % UTF-8 Hotspot T
S S ® J
Unix ®
(60s) Plan 9
oS
80s 90s 2000 2005 2010 2018

Russ Cox

rsc@swtch.com

c/o Google
5 Cambridge Center
Cambridge, MA 02142

A C, an E-flat, and a G walk into a bar.
The bartender says, “Sorry, but we don't serve minors.”

What's grey? A melted penguin.

Go’'s 21st Century “5th Gen” Characteristics

Concurrency

Distributed Systems
Garbage Collection
Memory and Data Locality
Readability

Simplicity

Concurrency

Why Massive Concurrency?

Why goroutines (green threads) ?

D
<
=
=
(=]
7

re &

Hard

Con;taa ute

Concurrency

% Go
gn (&
S o
C++ at
Google
80s 90s 2000 2005 2010 2018

D
<
=
=
(=]
7

re &

Hard

Con;taa ute

Concurrency

% Go
gn (&
S o
C++ at
Google
o
C10K
80s 90s 2000 2005 2010 2018

D
<
=
=
(=]
7

Concurrency

n Epoll
& (lintx) a
2 Kqueue ®
§ (BSB) .
C++ at
Google
o
C10K
80s 90s 2000 2005 2010 2018

D
<
=
=
(=]
7

Languages

SEDA
®

Java NIO

Epgll
(linux) GS

Kqueue

(BSD)

o
® C++ at
Python Google
Twisted

o
C10K

Concurrency

90s

2000 2005 2010

2018

@
Concurrency

SEDA
®
Java NIO
Epoll
"
° & (i) %
= 3 Kqueue ®
S £ B
n S (BSD) ®
® C++ at
Python Google
Twisted
P4 ()
P Core 2
C10K

90s 2000 2005 2010 2018

D
<
=
=
(=]
7

® Her Sutter “The Concurrency
SEDA ® Free Lunch is Over
Java NIO
Epoll
(7]
& (liftx) £
A Kqueue -
5 (83D) o
® C++ at
Python Google
Twisted
P4 o
P Core 2
C10K
90s 2000 2005 2010 2018

The Concurrency Revolution

Post a Comment

Will concurrency be the next revolution in software development?

Herb Sutter (http://www.gotw.ca/) chairs the ISO C++ Standards committee and is an architect
in Microsoft's Developer Division. His most recent books are Exceptional C++ Style and C++
Coding Standards (Addison-Wesley).

We appear to be at a major turning point in the way we develop software.

The major processor architectures, from Intel and AMD to Sparc and PowerPC, have run out of
room with most of their traditional approaches to boosting CPU performance. Instead of driving
clock speeds and straight-line instruction throughput ever higher, they are turning en masse to
hyperthreading and multicore architectures. That puts us at a fundamental turning point in
software development because for years, we've enjoyed a free lunch as faster computers directly
made our applications faster too, and that will largely not be true any more. Most of the coming
gains won't be picked up directly by the majority of today's applications.

’ Transistors
(thousands)

Single-thread
- Performance
(SpecINT)

il
5 ¥
= 3
£ W
o S
» 5

Typical Power
- (Watts)

Number of
" Cores

Hardware &

80s 90s 2000 2005 2010 2018

D
<
=
=
(=]
7

® Her Sutter “The Concurrency
SEDA ® Free Lunch is Over
Java NIO
Epoll
(7]
& (liftx) £
A Kqueue -
5 (83D) o
® C++ at
Python Google
Twisted
P4 o
P Core 2
C10K
90s 2000 2005 2010 2018

D
<
=
=
(=]
7

® Her Sutter “The Concurrency

SEDA Free Lunch is Over
® o
Java NIO
Epoll
4 .po Go _
up (linux) R Gunicorn
5:0 Kqueue (Bython)
5 (8B) 2 o
® C++ at Ruby
Python Google Mongrel
Twisted
P4 o
PS Core 2
C10K
90s 2000 2005 2010 2018

’ Transistors
(thousands)

Single-thread
- Performance
(SpecINT)

il
5 ¥
= 3
£ W
o S
» 5

Typical Power
- (Watts)

Number of
" Cores

Hardware &

80s 90s 2000 2005 2010 2018

- - Transistors
(thousands)

— — —_—— Single-thread
: - Performance
(SpecINT)

— —
- — e—
- —_—

Software |
Languages

_ — — - Typical Power
e T 7 (Watts)

~— T Number of
~ Cores

(4]
D
S
]
=

o
S
«
I

80s 90s 2000 2005 2010 2018

e end of Moore’s

Faith no Moore

Selected predictions for the end of Moore’s Law
Prediction

Cited reason: issued

M Economic limits M Technical limits

1995 2000 2005 2010 2015 2020 2025

1995
Gordon Moore, Intel —— 2005

1996
G. Dan Hutcheson, VLSI Research @ — — — — — [l 20

2000

Isaac Chuang, IBM Research @ — — — — — — — — W 2020

2003
Paolo Gargani, Intel @ — b W 2021

Lawrence Krauss, Case Western, 20
and Glenn Starkman, CERN @~

2
Gordon Moore, Intel - — — — I 01525

2011

Michio Kaku, City College of NY @ — — — B 2021-22

13

20.
Robert Colwell, DARPA; (fmr) Intel @ — — — — — M 2020-22

2015

Sources: Press reports; The Economist

Economist.com

approx.

Gordon Moore, Intel @ — — — == — — — Wl 2025

D
<
=
=
(=]
7

® Her Sutter “The Concurrency

SEDA ® Free Lunchis Over @
® .
Java NIO Concurrent SE: Preparing
for Paradigm Shift
Epoll
> o Go _
Bl (linux) . Gunicorn
s:,, Kqueue @ython)
S (8B) 2 o
o
C++ at Ruby
Python Google Mongrel
Twisted
P4 ()
P Core 2
C10K
90s 2000 2005 2010 2018

D
<
=
=
(=]
7

Her Sutter “The

Concurrency

SEDA :
Free Lunch is Over
CSP o S |
(1978) Java NIO Concurrent SE: Preparing
for Paradigm Shift
n
@
8 (linux) G‘o Gunicorn
s:,, Kqueue @ython)
s (8SD) o
o
C++ at Ruby
Python Google Mongrel
Twisted
P4 ()
P Core 2
C10K
80s 90s 2000 2005 2010 2018

Programming S. L. Graham, R. L. Rivest
Techniques Editors

Communicating
Sequential Processes
C.A.R. Hoare

The Queen’s University
Belfast, Northern Ireland

This paper suggests that input and output are basic
primitives of programming and that parallel
of icati isa

fundamental program structuring method. When
combined with a development of Dijkstra’s guarded
command, these concepts are surprisingly versatile.
Their use is illustrated by sample solutions of a variety
of familiar programming exercises.

Key Words and Phrases: programming,

i primitives,

program structures, parallel programming, concurrency,
input, output, guarded

grams, three basic constructs have received widespread
gnition and use: A repetiti (e.g. the while
loop), an i (e.g. the iti
if..then. else), and normal sequential program composi-
tion (often denoted by a semicolon). Less agreement has
been reached about the design of other important pro-
gram structures, and many suggestions have been made:
Subroutines (Fortran), procedures (Algol 60 [15]), entries
(PL/1), coroutines (UNIX [17]), classes (SIMULA 67 [5]),
processes and monitors (Concurrent Pascal [2]), clusters
(CLU [13]), forms (ALPHARD [19]), actors (Hewitt [1]).
The traditional stored program digital computer has
been designed primarily for inisti ion of a
single sequential program. Where the desire for greater
speed has led to the introduction of parallelism, every
attempt has been made to disguise this fact from the
programmer, either by hardware itself (as in the multiple
function units of the CDC 6600) or by the software (as
in an I/0O control package, or a multiprogrammed op-
erating system). However, developments of processor
suggest that a multip machine, con-
structed from a number of similar self-contained proc-
essors (each with its own store), may become more
powerful, capaci reliable, and i than a
machine which is disguised as a monoprocessor.
In order to use such a machine effectively on a single
task, the component processors must be able to com-
i and to h with each other. Many

coroutines, procedures, multiple entries, multiple exits,

classes, data i iti

critical regions, monitors, iterative arrays
CR Categories: 4.20, 4.22, 4.32

1. Introduction

methods of achieving this have been proposed. A widely
adopted method of communication is by inspection and
updating of a common store (as in Algol 68 [18], PL/I,
and many machine codes). However, this can create
severe probl in the ion of correct prog;

and it may lead to expense (e.g. crossbar switches) and
unreliability (e.g. glitches) in some technologies of hard-
ware implementation. A greater variety of methods has

Among the primitive concepts of computer prog
ming, and of the high level languages in which programs
are the action of assi is familiar and

well understood. In fact, any change of the internal state
of a machine executing a program can be modeled as an
assignment of a new value to some variable part of that
machine. However, the operations of input and output,
which affect the external environment of a machine, are
not nearly so well understood. They are often added to
ap ing 1 only as an aft gk

Among the structuring methods for computer pro-

General permission to make fair use i (eaching o rescarch of all
or part of this material is granted to individual readers and to nonprofit
librarics acting for them provided that ACM’s copyright notice s given
and that reference is made to the publication, 1o its date of issuc, and
10 the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

‘This research was supported by a Senior Fellowship of the Science
Research Council.

Author's present address: Programming Rescarch Group, 45, Ban-
bury Road, Oxford, England.
© 1978 ACM 0001-0782/78/0800-0666 $00.75

“1

been prop for (61,
events (PL/I), conditional critical regions [10], monitors
and queues (Concurrent Pascal [2]), and path expressions
[3]. Most of these are demonstrably adequate for their
purpose, but there is no widely recognized criterion for
choosing between them.

This paper makes an ambitious attempt to find a
single simple solution to all these problems. The essential
proposals are:

(1) Dijkstra’s guarded commands [8] are adopted (with
a slight change of notation) as sequential control struc-
tures, and as the sole means of introducing and control-
ling nondeterminism.

(2) A parallel command, based on Dijkstra’s parbegin
(6], specifies concurrent execution of its constituent se-
quential (p! All the p start
simultaneously, and the parallel command ends only
when they are all finished. They may not communicate
with each other by updating global variables.

(3) Simple forms of input and output command are
introduced. They are used for communication between
concurrent processes.

Communications August 1978
of Volume 21
the ACM Number 8

Why build concurrency on the ideas of
CSP?

Concurrency and multi-threaded programming have over time
developed a reputation for difficulty. [...]JOne of the most
successful models for providing high-level linguistic support for
concurrency comes from Hoare’s Communicating Sequential
Processes, or CSP. Occam and Erlang are two well known
languages that stem from CSP. Go’s concurrency primitives
derive from a different part of the family tree whose main
contribution is the powerful notion of channels as first class
objects. Experience with several earlier languages has shown
that the CSP model fits well into a procedural language
framework.

D
<
=
=
(=]
7

Her Sutter “The

Concurrency

SEDA ® Free Lunchis Over @
CSP Java NIO Concurrent SE: Preparing
for Paradigm Shift
n
. @
8 (linux) G‘o Gunicorn
5:,, Kqueue @ython)
8 (85D) 3 o
o
C++ at Ruby
Python Google Mongrel
Twisted
P4 o
P Core 2
C10K
80s 90s 2000 2005 2010 2018

D
<
=
=
(=]
7

Her Sutter “The

Concurrency

SEDA ® Free Lunchis Over @
CSP Java NIO Concurrent SE: Preparing
for Paradigm Shift
n
. @
8 (linux) G‘o Gunicorn
5:,, Kqueue @ython)
8 (85D) 3 o
o
C++ at Ruby
Python Google Mongrel
Twisted
P4 o
P Core 2
C10K
80s 90s 2000 2005 2010 2018

Events, Threads and Goroutines

Nginx - event loop plus state machine model

Events, Threads and Goroutines

Nginx - event loop plus state machine model

(NGIUX
App logic

Events, Threads and Goroutines

Nginx - event loop plus state machine model

(NGIUX
Appegie

_ /

Events, Threads and Goroutines

Nginx - event loop plus state machine model

(NGIUX A
—N

Events, Threads and Goroutines

Nginx - event loop plus state machine model

C NGINX)

_ J

Events, Threads and Goroutines

Nginx - event loop plus state machine model

(NGIUX

Events, Threads and Goroutines

Nginx - event loop plus state machine model

(NGIUX

Events, Threads and Goroutines

Nginx - event loop plus state machine model

(NGIUX

NOY¢
\@dc

Events, Threads and Goroutines

Nginx - event loop plus state machine model

nudc

ol @
Y
o

C NGIUX) App

_ J

D
<
=
=
(=]
7

Her Sutter “The Concurrency

®
SEDA Free Lunch is Over @
o ® o
CSP Java NIO Concurrent SE: Preparing
(1978) for Paradigm Shift
- Epgll
»cgéj (linux) Go NodeJS
3 Kqueue ® “h
5 8$D) 2 Gunicorn
o C++ at Rlﬁy (Python)
Python Google Mongrel
Twisted
P4 ®
P Core 2
C10K
80s 90s 2000 2005 2010 2018

D
<
=
=
(=]
7

® Her Sutter “The Concurrency

SEDA :
® ® Free. Lunchis Over @
CSP Java NIO Concurrent SE: Preparing
(1978) for Paradigm Shift
- Epgll
% (linux) Go NodedS
3 Kqueue ® “h
5 8$D) 2 Gunicorn
o C++ at Rlﬁy (Python)
Python Google Mongrel
Twisted
P4 ®
P Core 2
C10K
80s 90s 2000 2005 2010 2018

D
<
=
=
(=]
7

® Her Sutter “The Concurrency
SEDA Free Lunchis Over @

® o
CSP Concurrent SE: Preparing
(1978) for Paradigm Shift
- Epoll
A (Iin.ux) Gol NodeJS
g K o @
50 queue
& BSD) | Gunicorn
- ® O
® C++at Ruby (Python)
& Pyt.hon Google Mongrel
Twisted
py — o
P Core 2
C10K
80s 90s 2000 2005 2010 2018

NGINX EVENT LOOP

WAIT FOR EVENTS
ON CONNECTIONS

D
<
=
=
(=]
7

® Her Sutter “The Concurrency
SEDA Free Lunchis Over @

® o
CSP Concurrent SE: Preparing
(1978) for Paradigm Shift
- Epoll
A (Iin.ux) Gol NodeJS
g K o @
50 queue
& BSD) | Gunicorn
- ® O
® C++at Ruby (Python)
& Pyt.hon Google Mongrel
Twisted
py — o
P Core 2
C10K
80s 90s 2000 2005 2010 2018

® Her Sutter “The Concurrency

. SEDA Free Lunchis Over @
® .
CSP Concurrent SE: Preparing
(1978) for Paradigm Shift
° & e NodedJ$S
e % o (linux) o‘e
:E A Kqueue
S & Java pdp) Gunicorn
n S o
Serverlet o C++ at Rtay (Python)
Model Python Google Mongrel
- Twisted
Psg o
P Core 2
C10K

80s 90s 2000 2005 2010 2018

ISP @ T ep
e translator

I()%P) (Tomcat)
Servlet
Source _ =
Code (Java)
Translation phase

ISP Container

Response

Java compiler
(embedded serve

;

'

Server

class
(.Class)

(a) Translation occurs at this point, if JSP has been changed or is new.

(b) If not, translation is skipped.

Text buffer
(in memory)

phase

Execution

%
- Iname=William Web Server
wsel name=

£~ 201 0K ' @
e Coakie:HPSESSD=138

GET /next,
Cookie; PHPSESSID=12345

200 0K = -

GET
?ﬂam: .
oo e e,

Web Server

o
m’ 201 0K . E I l
- cat-Cookie- PHPSESSID=12345 ‘ AR

%
.\’ (oolde:PHPSESSlD=1 2345
|
<htm\>...HWﬁ“’am...<mml> u

GET
?ﬂam: .
oo e e, Web

W . e
isw—f—mu/ws"”*

%
<htm\>...HWﬁ“’am...<mml> u

Y

6ET/wdcome.ghg?name=M"iam
eb Browser ‘
Session Store
. 201 0K
4 Cookie PHPSESSD=12345
et-Cookie:

S

GET /next.ph, ,
(ookie:PHPSESSlD-—.12345 l

- Session Store
200 0K :
1> HiWil\iam...<lhtm >
<html>...

—7

G

ET Awelcome ph Iname=William Web Server
e Browser

name=William

d " adl

~

4 201 0K & 4 3
et-Cookie: PHPSESSID=12343

S

GET /next.ghg
' Cookie: PHPSESSJD=12345 4 -
—~ “ l

~

200 0K ~ jon §
<html>...HiWil\iam...<lhtm‘> ek e

-

= Threads

REQUESTS, ETC

INTENSIVE

EVENT LOOP OPERATION

(single thread) [Fil Sysem

Database

: | Computation | :

Trigger Callbock

Y
| Think for a while |

Lock left chop

LocK right chop

H

| Eatforawhile |

Unlock left chop

Unlock right chop

H

Syscall impact on user-mode IPC

1.5

g ‘g 1.3

.g 1.1

800 Lost performance (cycles)
§ 3 0.7

! Zos

2 £ = Syscall exception

0 2000 4000 €000 8000 10000 12000 14000 16000
Time (in cycles)

CONCURRENCY - Conclusions

e goroutines are a success: give you the same expressiveness of a traditional
imperative programming language while hiding the event driven nature of their
interactions with the outside world from the programmer.

e when goroutines do need to coordinate, they do so in user space, rather than
being forced to use expensive kernel interactions.

(<b]
<
=
=
(=]
7

Distributed Systems ® Her Sutter “The The rise of
SEDA Free Lunch is Over @ containers +
o ® ® Concurrent SE: .
CSP Java NIO - ot cloud-native+
(1978) repa.rlng or. ecosystem
Paradigm Shift Microservices
Epoll \serverless)
(7]
'6:9 ® ("n‘ux) Go NodedS
3 Kqueue ¢ S
§ Java (Bsﬁ) Gunicorn
Serverlet o C++ at Rtﬁy (Python)
Model Python Google Mongrel
Twisted
P4 o
P Core 2
C10K
80s 90s 2000 2005 2010 2018

(<b]
<
=
=
(=]
7

Garbage Collection > Her Sutter “The The rise of
SEDA Free Lunch is Over @ containers +
o ® ® Concurrent SE: .
CSP Java NIO - ot cloud-native+
(1978) repa.rlng or. ecosystem
Paradigm Shift Microservices
Epoll \serverless)
(7]
'6:9 ® ("n‘ux) Go NodedS
3 Kqueue ¢ S
§ Java (Bsﬁ) Gunicorn
Serverlet o C++ at Rtﬁy (Python)
Model Python Google Mongrel
Twisted
P4 o
P Core 2
C10K
80s 90s 2000 2005 2010 2018

(<b]
<
=
=
(=]
7

Garbage Collection > Her Sutter “The The rise of
SEDA Free Lunch is Over @ containers +
o ® ® Concurrent SE: .
CSP Java NIO - ot cloud-native+
(1978) repa.rlng or. ecosystem
Paradigm Shift Microservices
Epoll \serverless)
(7]
'6:9 ® ("n‘ux) Go NodedS
3 Kqueue ¢ S
§ Java (Bsﬁ) Gunicorn
Serverlet o C++ at Rtﬁy (Python)
Model Python Google Mongrel
Twisted
P4 o
P Core 2
C10K
80s 90s 2000 2005 2010 2018

D
<
=
=
(=]
7

® Her Sutter “The

Memory Locality = The rise of
Free Lunchis Over @ :
gsp g ‘N 0 ® Concurrent SE: gfﬁ:l:z:;;
ava : .
(1978) Prepa.rlng for. ecosystem
Paradigm Shift Microservices
" Ep 8" \serverless)
e e (linux) NodedS
< Go o
3 Kqueue - ®
§ Java (Bsﬁ) Gunicorn
Serverlet o C++ at Rtﬁy (Python)
Model Python Google Mongrel
Twisted
P4 o
P Core 2
C10K
80s 90s 2000 2005 2010 2018

(<b]
<
=
=
(=]
7

® Her Sutter “The

Memory Locality = The rise of
Free Lunchis Over @ :
gSP f ‘N o o Concurrent SE: gfﬁ:l:z:i;
ava . .
(1978) Prepa.rlng for. ecosystem
Paradigm Shift Microservices
Hotspot E serverless
" poll N\ J
g J\Wl (Iin‘ux) Go NodedS
E K ¢ S
= queue
§ Java (Bsﬁ) Gunicorn
Serverlet o C++ at Rtﬁy (Python)
Model Python Google Mongrel
Twisted
P4 o
P Core 2
C10K
80s 90s 2000 2005 2010 2018

Memory & Data Locality

Python

% python

>>> from sys import getsizeof
>>> gocon = 2014

>>> getsizeof(gocon)

24

Java

int gocon = 2014;

Memory & Data Locality

Java

// 16 bytes on 32 bit JVM
// 24 bytes on 64 bit JVM
Integer gocon = new Integer(2014);

Memory & Data Locality

150,500

PROCESSOR
‘O‘M» Ry e T T TR T TR N T TR AL ELE LA A A P T T PP T TR N R TR T PRIT R LR ALY

YOO frereserasaniisagrnnitisronsae rRass ittt tbau Y

il MEMORY

19%0 1935 19906 1995 2066 2605 26068

D
<
=
=
(=]
7

® Her Sutter “The

Memory Locality = The rise of
Free Lunchis Over @ :
gSP f ‘N o o Concurrent SE: gfml:z:i,;
ava . .
(1978) Prepa.rlng for. ecosystem
Paradigm Shift Microservices
Hotspot E serverless
" poll N\ J
g J\Wl (Iin.ux) Go NodedS
E K ¢ S
= queue
§ Java (Bsﬁ) Gunicorn
Serverlet o C++ at Rtﬁy (Python)
Model Python Google Mongrel
Twisted
P4 o
P Core 2
C10K
80s 90s 2000 2005 2010 2018

Memory Locality

Java

No value types

Everything Allocated

Memory Locality

Java

No value types

Everything Allocated

Go

Memory Locality

Java Go

No value types Structs

Everything Allocated True Value types

Memory Locality

Java

No value types
Everything Allocated

Can't return multiple values
(until- 2018)

Go

Structs

True Value types

UlIt

Memory Locality = Her Sutter “The

The rise of

J

SEDA Free Lunchis Over @ containers +
o ® ® Concurrent SE: .
CSP Java NIO - ot cloud-native+
(1978) repa.nng or. ecosystem
Paradigm Shift Microservices
Hotspot E serverless
pr— poll \
g '6:9 J\Wl (Iin.ux) Go NodedS
5 | Kqueue © ® o
S § | ; ' Java (Bsﬁ) Gunicorn
il 5 Serverlet o C++ at R Lay (Python)
“75 Model Python Google Mongrel
‘; Twisted
P4 o
PS Core 2
C10K
90s 2000 2005 2010 2018

When the three of us [Ken Thompson, Rob Pike, and Robert
Griesemer] got started, it was pure research. The three of us got
together and decided that we hated C++. [laughter] ... [Returning
to Go,] we started off with the idea that all three of us had to be
talked into every feature in the language, so there was no
extraneous garbage put into the language for any reason.

https://en.wikipedia.org/wiki/Rob_Pike
https://en.wikipedia.org/w/index.php?title=Robert_Griesemer&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Robert_Griesemer&action=edit&redlink=1

Memory Locality

Java Go

No value types Structs
Everything Allocated True Value types
Can't return multiple values

Memory Locality

Java Go
No value types Structs
Everything Allocated True Value types

Can’t return multiple values compact object layout

No object headers

Memory Locality

Java Go
No value types Structs
Everything Allocated True Value types

Can’t return multiple values compact object layout

No object headers

Memory Locality

e UTF-16

No value types
Everything Allocated

Can't return multiple values

£l UTF-8

Structs

True Value types
Compact object layout
No object headers
Lazy initialization of
collections

Memory and Data Locality (conclusion)

Memory Locality (conclusion)

® (o gives programmers the tools to talk about memory
efficiently if they need it.

Memory Locality (conclusion)

® (o gives programmers the tools to talk about memory
efficiently if they need it.
e Flexible

Memory Locality (conclusion)

® (o gives programmers the tools to talk about memory
efficiently if they need it.

® Flexible

e Memory management (not an all-or-nothing like in C++ or
Rust)

Readability

Readability is paramount—Rob Pike

Readability

“ Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it. "—Brian
Kernighan

D
<
=
=
(=]
7

Readabilty o Her Sutter “The (The rise o
SEDA Free Lunch is Over @ containers +
o ® ® Concurrent SE: .
CSP Java NIO Pracain cloud-native+
(1978) P _ g _ ecosystem
Paradigm Shift Microservices
Hotspet, Eooll serverless
o _)
'6:9 J\Wl (Iin.ux) Go NodedS
3 Kqueue © ® o
< Java (ﬁﬁ) Gunicorn
- (&
Serverlet o C++ at Rtﬁy (Python)
Model 20000 Pythgn G.r.\eg!e- Mongrel
Twisted
P4
- # of google
' employees in
C10K 2007: 16,805
80s 90s 2000 2005 2010 2018

Readability o Her Sutter “The (me
SEDA Free Lunch is Over @ containers +
o ® ® Concurrent SE: .
CSP Java NIO _ cloud-native+
(1978) Preparing for ecosystem
Paradigm Shift Microservices
Hotspet, Eooll serverless
— = . /
g '6:9 J\Wl (Iin‘ux) Go NodeJS
Za Kqueue ¢ O
S § Java (é@) A unicorn
Serverlet o C++ at (Python)
Model = Ppython Google
Twisted
P4

; of google

employees in
2010: 24440

10000

C10K

80s 90s 2000 2005 2010 2017

Her Sutter “The

Readablllty A # of google
Free Lunchis Over @ mployees
gsp ® ® Concurrent SE: in 2018:
(1978) Java NIO Preparing for
Paradigm Shift
Hotspot, Eooll ~93!500
[—— |
g '6:p J\Wl (Iin‘ux) Go NodeJS
& Kqueue S SN
S § Java (é“@) Inicorn
Serverlet o C++ at ython)
Model = Ppython Google
Twisted
P4
C10K

90s 2000

2005

2010 2018

Readability

simplicity

“‘simple is better”

Readability

simplicity

“this Is an insult to

“‘simple is better” . . i
intelligent programmers

Readability

simplicity

“‘simple is better”

“you're trying to
commodify programming
and create a situation
where our bosses can
replace us at will”

“You're not paid to program, you're not even paid to maintain
someone else’s program, you're paid to deliver solutions to the
business.”

- Dave Cheney

Readability

Programs which cannot be maintained will be rewritten

Readability

Programs which cannot be maintained will be rewritten

“If you can’t be replaced, you cannot be promoted”

Her Sutter “The

Readablllty A # of google
Free Lunchis Over @ mployees
gsp ® ® Concurrent SE: in 2018:
(1978) Java NIO Preparing for
Paradigm Shift
Hotspot, Eooll ~93!500
[—— |
g '6:p J\Wl (Iin‘ux) Go NodeJS
& Kqueue S SN
S § Java (é“@) Inicorn
Serverlet o C++ at ython)
Model = Ppython Google
Twisted
P4
C10K

90s 2000

2005

2010 2018

of google

Readabilit e
y Average length of stay at SCOMPANY
mployees

SEDA

o ® i :
CSP Java NIO B
(1978)
. Hotspeot, Epoll ~93!500
g % JWI (Iin.ux) Go NodeJS
:E 2 Kgueue © o |
S § Java (ﬁoﬁ) A inicorn
Serverlet () C++ at ython)
Model .., Python Google
Twisted
P4
10000
C10K

80s 90s 2000 2005 2010 2018

of google

Readabilit e
y Average length of stay at SCOMPANY
mployees

SEDA

P ()) . .
CSP Java NIO B
(1978)
" Hotspot, Epoll ~935500
g % JWI (Iin.ux) Go NodeJS
:E 2 Kgueue © o |
S § Java (ﬁoﬁ) A inicorn
Serverlet () C++ at ython)
Model .., Python Google
Twisted
P4
10000
C10K

80s 90s 2000 2005 2010 2018

of google

Readabilit e
y Average length of stay at SCOMPANY
mployees

SEDA

® ® — ¢— d—) d—) [5018
CSP Java NIO '
(1978)
" Hotspot, Epoll ~935500
g % JWI (Iin.ux) Go NodedS
:E 2 Kgueue © o |
S § Java (ﬁoﬁ) A inicorn
Serverlet () C++ at ython)
Model .., Python Google
Twisted
P4
10000
C10K

80s 90s 2000 2005 2010 2018

"Uncle" Bob Martin - "The Future of Programming

Number of programmers doubles every five years,

Tens of millions of programmers.

Half of whom have less than five years exp

> S 51:05 /1:1 8:20 Scroll for details

W

"Uncle" Bob Martin - "The Future of Programming

Number of programmers doubles every five years,

Tens of millions of programmers.

Half of whom have less than five years exp

> >| ‘.1 51:05/1:18:20) i I) ” ” for details N

W

Readability

N+1 different opinions on what makes readability.

Familiarity - Go’s small language footprint (25 keywords)

Readability

Familiarity - Go’s small language footprint (25 keywords)

Ingroup knowledge

Readability

Familiarity - Go’s small language footprint (25 keywords)
Ingroup knowledge
Learners perspectives - First time seeing code

No “magic” - easy vs. Simple

Readability

Familiarity - Go’s small language footprint (25 keywords)
Ingroup knowledge

Learners perspectives - First time seeing code

No “magic” - easy vs. Simple

HTML w3org: 3.2. Priority of Constituencies: User > Author > Implementor

Readability

Personal Convenience.

Convention over Configuration

Readability
Persenat-Conventence:

Convention over Configuration ') .

Readability

Software Engineering

Software Engineering vs Programming

Software Engineering

Software Engineering vs Programming

Software Engineering = Programming integrated over time.

Software Engineering

Software Engineering vs Programming
Software Engineering = Programming integrated over time.

Engineering is what happens when things need to live longer and influence of
time starts creeping in. -Titus Winters

Software Engineering

Software Engineering vs Programming
Software Engineering = Programming integrated over time.

Engineering is what happens when things need to live longer and influence of
time starts creeping in. -Titus Winters

All this complexity is fundamentally a different flavor than programming.

Software Engineering

focus on sustaining engineering (readability)

Software Engineering
TIME TRAVELING EVERYWHERE

Cl
Unit Tests
Refactoring

Design Patterns

Dependency Management

Software Engineering

focus on sustaining engineering (readability)
continuance of many different engineers over a long period of time
clear module boundaries

keeping import dependencies between packages linear, thus keeping compile
times down.

Simplicity and the Greater Good

|
|
S

KEEP
LEFT = -

@O
OO
20594

sror) @
NQO
AH®
N,

@@@®©@

®E

“Simplicity i1s a great virtue but it requires hard work to achieve it
and education to appreciate it. And to make matters worse:
complexity sells better.”

— Edsger W. Dijkstra

of google

Readabilit e
y Average length of stay at SCOMPANY
mployees

SEDA

® ® — ¢— d—) d—) [5018
CSP Java NIO '
(1978)
" Hotspot, Epoll ~935500
g % JWI (Iin.ux) Go NodedS
:E 2 Kgueue © o |
S § Java (ﬁoﬁ) A inicorn
Serverlet () C++ at ython)
Model .., Python Google
Twisted
P4
10000
C10K

80s 90s 2000 2005 2010 2018

The Future?

The problems we have today were not there 20
years ago, nor will be problems we face 20 years

from now.

= &
5 ¥
= 3
= W
o S
» 3

2017 2020 2025 2030 2035 2040

i Kubernetes ®
The Future? = -
Al/MLonCode yum OS
: . Tersorflow apt rewrit
“Big Data” es
(rust)
"
%
g S Rust
S g i ® Modern
o 3 ® Juga C4+
v/ S %
S palerng FuschiaOS
_ Cgroups & Q
Namespaces
GPU Serverless

[FaasS

2003 2010 2015 2020 2025 2040

The Future?

...nang on for the ride

> 8
59
= 3
= W
o S
» 3

2017 2020 2025 2030 2035 2040

Thank you!

Carmen Andoh
@carmatrocity
GOTO Copenhagen

November 2018

