
© 2017 Pivotal Software, Inc. All rights reserved.
@kennybastani @JakubPilimon

State or events?

!1

State or Events?

Kenny Bastani

Jakub Pilimon

Kenny Bastani

@kennybastani

Global CTO @Pivotal

© 2017 Pivotal Software, Inc. All rights reserved.
@kennybastani @JakubPilimon

State or events?

!4

SZCZEBRZESZYN
CHRZĄSZCZYŻEWOSZYCE

© 2017 Pivotal Software, Inc. All rights reserved.
@kennybastani

The agenda
• Event sourcing, a history

• Why event sourcing?

• Apache Kafka and the immutable log

• Event-driven microservices

• Reference architecture

!5

© 2017 Pivotal Software, Inc. All rights reserved.
@kennybastani @JakubPilimon

Event sourcing

A mystery, a history…

!6

Origin story

Event Sourcing ensures that all changes to application state are
stored as a sequence of events. Not only can we query these events,
we can also use the event log to reconstruct past states.

We can determine the application state at any point in time. We do this
by starting with a blank state and rerunning the events up to a
particular time.
 
–Martin Fowler

Did Martin Fowler invent event sourcing?

Edgar Allan Poe (1804-1849)

We appreciate time by events alone. For this reason we
define time (somewhat improperly) as the succession of
events; but the fact itself--that events are our sole means
of appreciating time-- [leads to] the erroneous idea that
events are time--that the more numerous the events, the
longer the time; and the converse.

Did Edgar Allan Poe invent event sourcing?

Lol no…

Ship

Chip Log 
15th-16th Century

Drag

Knots

Ocean

Log Reel
Log-line

© 2017 Pivotal Software, Inc. All rights reserved.
@kennybastani

The Poe connection
• Poe was obsessed with the idea of event sourcing for much of his life.
• But in his time, things were commonly measured using a form of event

sourcing, like the knots on the log-line for measuring the speed of
ships.

• Most software is built on metaphors. The problem is, we’ve forgotten
the metaphors have meaning.

!13

Marginalia, Edgar Allan Poe, 1849

Marginalia, Edgar Allan Poe, 1849

Ship

Chip Log 
15th-16th Century

Events (Objects)

Aggregation takes causal events across space and time and 
summarizes it as a single object that’s easier to store in memory

Time
Space

All great software is built on metaphors

Desktop

Cloud

Web

Infrastructure

Virtual MachineState

Events

Services

Logs

Kernel

Tablets

Application

Instance

SpaceTimestamp

Memory

Containers

Database

Platform

Computer

Refactor
Files Pages

Documents

The metaphors mean something
• There’s an underlying abstraction to our own humanity and it has an

intimate connection to the virtual world we are building
• The desktop computer replaced actual desktops by replacing the

abstract functionality of the desktop
• The virtual machine replaced the server by virtualizing the abstract

functionality of the hardware

But ultimately, it’s hard to keep track of
all the layers.

Eventually we get lost in abstraction.

Serverless

Microservices

NoSQL
SOA

Middleware

All confusing software is built on nonsense

DevOps

ESB

I’m not saying microservices, DevOps,
and serverless are nonsense.

I’m saying that metaphors make good
ideas more durable to nonsensical
interpretation.

Ship

Chip Log 
15th-16th Century

Drag

Knots

Ocean

Log Reel
Log-line

LOG!

LOG!

© 2017 Pivotal Software, Inc. All rights reserved.
@kennybastani @JakubPilimon

Apache Kafka

The immutable log as the source of truth

!27

Time-ordered events

Store state as a log of events

https://www.confluent.io/blog/messaging-single-source-truth/

https://www.confluent.io/blog/messaging-single-source-truth/

Ship

Chip Log 
15th-16th Century

Drag

Knots

Ocean

Log Reel
Log-line

It’s the same thing, but way before software

© 2017 Pivotal Software, Inc. All rights reserved.
@kennybastani @JakubPilimon

Motivations

What’s the benefit of managing state in a
distributed system?

!32

Typical way of managing state

Account
(pending,

10$)
Account
(active,

10$)

Account
(archived,

10$)

Account
(suspended,

10$)

State machine

Account
(pending,

10$)
Account
(active,

10$)

Account
(archived,

10$)

Account
(suspended,

10$)

Audit of states and transitions

Account
(pending,

10$)
Account
(active,
10$)

Account
(archived,

10$)

Account
(active,
15$)

Event Sourcing
Aggregates can be used to generate the consistent state of any object

It provides an audit trail that can be replayed to generate the state of an object from
any point in time

It provides the many inputs necessary for analyzing data using event stream
processing

It enables the use of compensating transactions to rollback events leading to an
inconsistent application state

So why aren’t we doing it everywhere?

Because storing state as an immutable
log of events for domain data didn’t
make sense in a time B.C.

B.C. = Before Cloud  
 

– Andrew Clay Shafer 

https://www.confluent.io/blog/messaging-single-source-truth/

https://www.confluent.io/blog/messaging-single-source-truth/

https://www.confluent.io/blog/messaging-single-source-truth/

https://www.confluent.io/blog/messaging-single-source-truth/

The Immutable Log

https://www.confluent.io/blog/messaging-single-source-truth/

https://www.confluent.io/blog/messaging-single-source-truth/

The Immutable Log

Event Sourcing and GDPR

What if somebody requests to have
their immutable data removed from

a log?

How about event-driven (micro)services?

There are no foreign key constraints
between (micro)services.

Domain Graph

Domain
Relationships

No foreign key constraints across services

Foreign
Key

Relationships

PRODUCT 
SKUS 

(Product ID)

Distributed joins are slow (reads)

Distributed transactions are brittle (writes)

(Micro)service joins

• Services are organized using
domain-driven design

• Services cannot own domain
data from two different bounded
contexts

• Complex joins (reads) are
inevitable

• Avoid distributed transactions
(write)

What is CQRS?

CQRS (Command Query Responsibility Segregation) is a
pattern for separating handlers for commands and

queries.

Handlers synchronize by turning events into materialized
views.

How do I do CQRS in a distributed system?

Let’s look at a system architecture that uses
Spring Boot

COMMANDS 
GENERATE 

EVENTS

EVENTS 
ARE BROADCASTED  
TO OTHER SERVICES

EVENT LISTENERS 
BUILD QUERY 

MODELS

API GATEWAYS HIDE THE 
IMPLEMENTATION DETAILS

API API

READING YOUR OWN WRITES?

WRITE API READ API

© 2017 Pivotal Software, Inc. All rights reserved.
@kennybastani @JakubPilimon

Reference architecture
Creating a social network as microservices

!60

How do you do friend of a friend
queries with microservices?

User User

UserUser User

Friend

Friend Friend
FriendFriend

User User

UserUser User

Friend

Friend Friend
FriendFriend

Day 1 of building microservices

Day 2 of building microservices…

Materialized views

Create aggregate views from event data

• Manage the storage of domain data that it owns.

• Produce the API contract for the domain data that it owns.

• Produce events when the state of any domain data changes.

• Maintain relationship integrity to domain data owned by other services.

• Subscribe to domain events emitted by separate domain services.

• Maintain an ordered immutable event log for events it receives.

• Create connected query projections of distributed domain data.

• Provide performant read-access to complex views of domain data.

Open Source 
Example

https://github.com/kbastani/event-sourcing-microservices-basics

© 2017 Pivotal Software, Inc. All rights reserved.
@kennybastani @JakubPilimon

Thanks!  
 

Q/A

!70

https://github.com/kbastani/event-sourcing-microservices-basics

kennybastani.com

Thanks!  
 

Q/A

https://github.com/kbastani/event-sourcing-microservices-basics

https://github.com/ddd-by-examples/all-things-cqrs

https://github.com/ddd-by-examples/event-source-cqrs-sample

