
dotscience @lmarsden
@getdotscience

Inextricably Linked: 
Reproducibility and Productivity 

in Data Science and AI
Mark Coleman

mark@dotscience.com
@mrmrcoleman

mailto:mark@dotscience.com


dotscience @lmarsden
@getdotscience



dotscience @lmarsden
@getdotscience

Who am/was I?

⇢ VP Marketing - dotscience
⇢ Co-organized first ServerlessConf - Brooklyn
⇢ CNCF Marketing chairperson
⇢ Co-organized first DockerCon EU
⇢ CI/CD consultant
⇢ Devops early fan
⇢ C++ programmer
⇢ C embedded systems

Now

Then



dotscience @lmarsden
@getdotscience

Let's compare

Data Science/ML/AI
and

Software Dev/DevOps



dotscience @lmarsden
@getdotscience

Not long ago, software dev was a bit of a mess

⇢ Work split across silos
+ Development
+ Testing
+ Operations

⇢ Caused huge amounts of pain



dotscience @lmarsden
@getdotscience

90s Software Development

⇢ Without version control, life is hard
+ You email zip files of source code

⇢ Two people change the same files?
+ Your work gets clobbered



dotscience @lmarsden
@getdotscience

90s Testing

⇢ "Works on my machine"
⇢ Email, USB stick, or shared drive → separate 

testing team
⇢ High latency between breakage & knowing

+ Lost valuable context by time to fix
+ A slow & frustrating cycle



dotscience @lmarsden
@getdotscience

90s Operations

⇢ Throw release candidates over the wall to Ops
⇢ They drop a WAR file onto a Tomcat server
⇢ Dev & test failed to account for NFR

+ Ops can't fix it
⇢ Monitoring is sketchy, users find bugs

+ SSH into the production box
+ Process skipped during outage, introduces more bugs

⇢ Everyone is sad



dotscience @lmarsden
@getdotscience

How did we ship anything with all this mess?

⇢ Slowly!
⇢ Release cycles are weeks or months
⇢ Bad tooling & process?

+ Choose SPEED or SAFETY but not both
⇢ Most companies were forced to choose 

SAFETY



dotscience @lmarsden
@getdotscience

What’s this have to do with reproducibility?

⇢ Software is iterative
⇢ Try something → figure out what happened → learn → try 

something else
⇢ How do we figure out what happened?

+ Reproduce all the variables & see what changed
⇢ When bad tooling stops us reproducing an environment 

development grinds to a halt



dotscience @lmarsden
@getdotscience

Things got a lot better in 20 years!



dotscience @lmarsden
@getdotscience

https://www.joelonsoftware.c
om/2000/08/09/the-joel-test-
12-steps-to-better-code/



dotscience @lmarsden
@getdotscience

Destructive vs Constructive Collaboration

⇢ Destructive = making copies
+ No source of truth
+ Divergence occurs instantly

⇢ Constructive = single source of truth
+ Multiple branches, try different ideas
+ Diff & merge enables reconciliation

⇢ Version control enables constructive collaboration



dotscience @lmarsden
@getdotscience

Ubiquitous Version Control

⇢ Sane people use version control
⇢ Developers collaborate effectively
⇢ Testing teams can too
⇢ Even Ops uses version control now – GitOps!



dotscience @lmarsden
@getdotscience

Continuous Integration

⇢ Version control enables CI
⇢ CI enables fast feedback

+ React to failures when we can still remember 
what we changed (minutes not weeks)

⇢ Platform for tested versioned artifacts
+ Deploy into CD pipeline



dotscience @lmarsden
@getdotscience

Continuous Delivery & Observability

⇢ A single traceable way to get a tested change in 
development to production

⇢ DevOps = ops can collaborate in same way that 
dev & test teams do with CI

⇢ Application level observability & monitoring 
allows deep dive into root causes



dotscience @lmarsden
@getdotscience

What has all this achieved?

⇢ Version control enabled reproducibility & 
collaboration

⇢ This unlocks Continuous Integration & 
Continuous Delivery

⇢ Add some Observability & Monitoring...
⇢ You get both SPEED and SAFETY!



dotscience @lmarsden
@getdotscience

How is AI doing in 2018?

⇢ Been talking to dozens of data science & AI 
teams

⇢ Data science & AI seems to be where software 
development was in the late 90s :'(



“In retrospect if we had been able to save the versions or 
have gone back in time to see how he got his learning 
rates it would have avoided a lot of questions from the 

auditors.



“Two of the data scientists who worked on that particular 
model have left and gone to other companies. You want to 

be able to see what they did and how they did it and not 
that it's gone when they're gone.



“
One model failed for 3 months and we lost an 

immeasurable amount of money!



“
After the last audit I was surprised by how many problems 
in the audit we could have solved by keeping PAPER LOGS. 
But if we ask our data scientists to do this they will leave!



“
We keep our data scientist teams small and in the same 

room so they can track their summary statistics by talking 
to each other and remembering



dotscience @lmarsden
@getdotscience

Destructive collaboration is commonplace

⇢ Shared drives for training data
⇢ Notebooks emailed or slacked between team 

members
⇢ Scant manual documentation
⇢ Data wrangles go unrecorded



dotscience @lmarsden
@getdotscience

Testing of models is rare

⇢ Automated testing of models is rare
⇢ CI systems uncommon
⇢ "Testing" is more often done manually by an 

individual in an untracked Jupyter environment



dotscience @lmarsden
@getdotscience

Deployment is manual

⇢ Models often “thrown over the wall”
⇢ Left in production to rot until somebody notices
⇢ No real monitoring, especially challenging with 

retraining & model drift
⇢ Haven't seen much continuous delivery



dotscience @lmarsden
@getdotscience

How do we ship anything with all this mess?

⇢ Inappropriate tooling makes us choose between
SPEED and SAFETY

⇢ Therefore
+ AI/ML projects being shipped slowly with meticulous docs
+ AI/ML projects being shipped unsafely

+ not tracked, not auditable
+ no single source of truth for what made it into prod & how
+ siloed in peoples' heads...



dotscience @lmarsden
@getdotscience

How do we get AI & ML & etc out of the 
90s?



Continuous 
Integration

Continuous 
Delivery

Version control is fundamental & enabling
in the lifecycle

Observability & 
Monitoring

Version control

Development



How do we version control?

⇢ Versioned data, environment, code: notebooks + 
parameters

⇢ Metrics tracking: parameters ↔ summary statistics (e.g. 
accuracy, business metrics)

⇢ Diff & merge for notebooks, data, code
⇢ Forks, pull requests & comment tracking
⇢ Enables:

+ Creativity & collaboration
+ Audit & reporting



How do we continuously integrate?

⇢ What do automated tests look like for models?
+ Not always binary like software – probabilistic
+ Pick some inputs / outputs & put triggers on them
+ If it goes > N stddev, fail tests
+ Also test NFR & unit/integration tests on code

⇢ When issues are reported with a model, convert issues to 
tests
+ This way, CI provides "guide rails" for faster & more 

confident development



How do we continuously deliver?

⇢ Triggers: when code changes or data changes
⇢ Automatically run code and model tests
⇢ If tests pass, automatically deploy to production

+ Champion Challenger, A/B
+ Minimize time between breakage & knowing
+ Minimize MTTR not MTBF, fast rollback

⇢ From decisions made in production, be able to track back 
perfectly
+ See lineage of model development right down to 

individual parameter tweakings - who/what/when/why



How do we solve observability?

⇢ Once model is in production, track model health with 
same metrics used in development
+ Single source of truth for dev/prod metrics

+ See model drift
+ If model health < X, page a human

⇢ Automatic retraining can happen periodically when new 
data is available

⇢ CI & CD gives us confidence to ship quickly



Continuous 
Integration

Continuous 
Delivery

So that's the big vision… where do we start?

Observability & 
Monitoring

Version control

Development



So you want to do reproducible data 
science/AI/ML?

Environment



So you want to do reproducible data 
science/AI/ML?

Environment
Code + 

Notebooks 
Including 

parameters



So you want to do reproducible data 
science/AI/ML?

Environment
Code + 

Notebooks 
Including 

parameters

Versioned 
Data 



How?



Pinning down environment

⇢ In the DevOps world, Docker has been a big hit.

⇢ Docker helps you pin down the execution 
environment that your model training (or other 
data work) is happening in.

⇢ What is Docker?



Pinning down code & notebooks

⇢ Developers have been version controlling their 
code for a while now.

⇢ Git is the default choice



Challenges with git in data science

⇢ In data science, it's not natural to commit every 
time you change anything, e.g. while tuning 
parameters

⇢ But you generate important results while you're 
iterating

⇢ git doesn't cope with large files, data scientists 
often mingle code & data

⇢ diffing and merging Jupyter notebooks not easy

Lets you track versions of your code and collaborate 
with others by commit, clone, push, pull…

Problems:



Proposal: a new version control & collaboration 
system for AI 

⇢ Use Dotmesh with ZFS
+ "Git for data"
+ Handles large data atomically & 

efficiently
+ Deal with terabyte workspaces

⇢ Track metrics/stats & params
⇢ Track lineage & provenance
⇢ Next:

+ Diff & merge notebooks
+ Enable pull requests



If you aren’t already dealing with this 
you most likely will be soon...



I need your help 🙏

mark@dotscience.com
@mrmrcoleman
@getdotmesh

dotscience.com/try

Questions?

mailto:mark@dotscience.com

