
A fresh perspective on multi-platform UI

Michael S. Thomsen
Product Manager
Google / Flutter.io

Building a better way for developing
mobile apps for iOS and Android

Challenges of mobile development today...

“Cross platform” approachesPlatform SDK “to the metal” approaches

Must fund two apps
Two teams, codebases, & investments

Inconsistent brand, features
Different across devices & OEMs

Poor Performance
Slow, jerky, unpredictable

Non-Native Look/Feel
Users can tell the difference

High-quality apps
Platform and system integrations

Fast development
Quick iterations, hot reload

High-performance UIs
Native code, GPU accelerated

Portability, reach
Single codebase

What if there was a better way?

High-Velocity
Development

Expressive and
Flexible Toolkit

Native iOS and
Android apps

High-Velocity Development

Unique UI model ‘UI-as-code’

No special markup language to learn
for describing UI; it’s just code

Reuse traditional programing features
for conditionals, lists operations, etc.

Re-use programming skills and
technique for refactoring and
structuring code

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text("Friendlychat"),

),

),

);

 }

}

Everything is a Widget, even the app
itself

build() methods render UI

Unique UI model ‘UI-as-code’
class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text("Friendlychat"),

),

),

);

 }

}

Unique UI model ‘UI-as-code’
class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text("Friendlychat"),

),

),

);

 }

}

Unique UI model ‘UI-as-code’
class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text("Friendlychat"),

),

),

);

 }

}

Unique UI model ‘UI-as-code’
class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text("Friendlychat"),

),

),

);

 }

}

High-velocity development

Sub-second reload times

Paint your app to life

Inspect running UI

3X Productivity Gains

Demo:

Flutter’s super fast,
stateful hot reload

https://docs.google.com/file/d/1nbGdVgp1GoU-N2f9K3QgN4qsEDc2Z3Fc/preview

Works with popular IDEs and editors

Terminal tool +
bring-your-own editor

VS CodeAndroid Studio

$ flutter create lakesApp

$ flutter devices
2 connected devices:
Emulator - Pixel 2
iPhone 6

$ flutter run -d iPhone

Works with popular libraries, APIs, and SDKs

FirebaseAndroid APIs iOS APIs

3rd-party
Android

SDKs

3rd-party
iOS SDKs

Android iOS

Xcode
Android
Studio

Package repository

● Download packages written by others
● Upload package to share

● 800+ Flutter packages published in
the past year

Expressive, brand-centric designs

Custom UI is not new

Flexibility and Control for Beautiful UIs

Stand out in the marketplace

Make your brand come to life

Never say "no" to your designer

Win awards with beautiful UI

Framework support for brand-specific design

Flexible widgets for
traditional (Material & iOS)
and brand-specific design

Compose your UI from
flexible building blocks

Ship a consistent feature
set to customers on both
iOS and Android

DEMO: Customer wanted
a custom ‘CircularButton’ widget

● Fixed size (120x120 dp).
● Text in middle.
● Blue border.
● Able to receive ‘pressed’ events

General approach:

● Compose from existing widgets.
● Look at source code of existing widgets

for inspiration.

Case Study: Reflectly

100% custom, brand-specific design

With shared UI, and Flutter’s shared widget set, able
to have create this UI from a single, shared
codebase across iOS & Android.

Implemented by a very small team in just a few
months

Native iOS and Android App

Natural platform affordances

Automatically supports
critical platform
differences

- Scrolling
- Navigation
- Fonts

Natural platform affordances

Automatically supports
critical platform
differences

- Scrolling
- Navigation
- Fonts

First-class Material Design

“I’m incredibly excited to welcome
Flutter into the official set of Material
Design Components as a full fledged
peer to our Android, iOS and Web
offerings.

Flutter’s philosophy of flexible and
adaptable widgets is a great fit for
Material Theming, and Flutter’s ability
for real time UI iteration is a game
changer in the way we polish and
refine designs.”

 Matías Duarte
VP, Google Material Design

Layered stack, very fast primitives at the bottom

Graphics with Skia: Android graphics engine

Text: Custom text rendering

Dart: Google open-source app language

Skia Text DartEngine
(C++)

Framework
(Dart)

Speed through many custom language technology

Development builds
Custom VM offers super fast hot reload change cycle

Release builds (when shipping)
Full AOT-compilation to native machine code
offers super fast startup and execution

In both
Language run-time optimized for UI

● Many new objects: Lock-free, fast allocation
● Short-lived objects: Precise, generational garbage collection

 ...
ldr r1, [sp]
ldr d0, [r1, #3]
vcmpd d0, d0
vmstat
bvs L0
vcvtid s2, d0
vmovrs r0, s2

adds r0, r0, r0
bvs L1

Case Study: 2Dimensions

2D skeletal mesh animation rendered
on-device in real-time

Seamlessly integrates with the Flutter
framework widgets
(seen here stacked on top of the animation)

Let’s step back a bit...

Ex
pe

rim
en

ta
l

*

Confidential + ProprietaryConfidential + Proprietary

Native SDKs App

Confidential + ProprietaryConfidential + Proprietary

OS

Runtime Framework

App

Native SDKs App

Confidential + ProprietaryConfidential + Proprietary

WebView-based SDKs

OS

Runtime Framework

WebView

JavaScript VM

App

Confidential + ProprietaryConfidential + Proprietary

Other runtimes + native SDKs

OS

App (view)

Non-Native Runtime

App (logic)

Runtime Framework Bridge

Confidential + ProprietaryConfidential + Proprietary

The fourth option

OS

Own Runtime & Framework

Game

FrameworkBridge

Confidential + ProprietaryConfidential + Proprietary

The fourth option

OS

Own Runtime & Framework

Game

FrameworkBridge

App

Confidential + ProprietaryConfidential + Proprietary

The fourth option

OS

Own Runtime & Framework

App

FrameworkBridge

Direct path between UI and OS: Good performance
Very few dependencies between app and OS: Good portability

Gaming engine & games

Flutter is an apps framework,
but that doesn’t seem to stop developers
from building gaming engines
and games with it.

https://github.com/luanpotter/flame
https://medium.com/flutter-community/flutter-crush-debee5f389c3
https://medium.com/dextra-digital/creating-the-t-rex-game-with-flutter-and-flame-6d01add1ad5b

http://www.youtube.com/watch?v=tsw1tGrE7bE

Wear OS

Variant of Android, so core framework just worked.

Some work to handle round screen,
and integrate with Ambient mode.

https://medium.com/@mjohnsullivan/experimenting-with-flutter-on-wear-os-f789d843f2ef

Desktop Embedding

Experimental implementation of the
Embedding API for Windows, macOS, and
Linux.

Base support for rendering, mouse/keyboard
Input, and a few system APIs (e.g. Files).

https://github.com/google/flutter-desktop-embedding

Flutter the technology vs Flutter the product

Flutter is currently focused on creating a complete product for developing great apps
for iOS and Android.

However, Flutter the technology is extremely flexible, and there is nothing inherently
mobile about the rendering…

Customers & Community

“Flutter provides a modern reactive
framework that enabled us to unify the
codebase and teams for our Android and
iOS applications.

It's allowed the team to be much more
productive, while still delivering a native
application experience to both platforms.
Stateful hot reload has been a game
changer for productivity”

Sridhar Ramaswamy
SVP, Google Ads and Commerce

Alibaba’s app incorporates Flutter to power
parts of their app.

Deployed to millions of devices.

Alibaba praises Flutter for its consistency
across platforms, the ease of generating UI
code from designer redlines, and the ease
with which their native developers have
learned Flutter.

Flutter Momentum

● 17x increase in active developers
since beta 1 @ MWC’18

● Open source (250+ contributors),
BSD license

● 41,016 Github stars (top-50!)
● 2500+ apps in Play Store
● startflutter.com, flutter.rocks,

flutter.institute, and more

Start a new app
from scratch

Test Flutter in
production with one

or two screens in
your existing app.

You already have an
iOS or Android app?
Use Flutter to build

for the other
platform. Combine
codebases when

you’ve proven your
Flutter app.

Build your new idea in
Flutter, and reach

both iOS and Android
at the same time.

Use Flutter for a
part of your app

Use Flutter to test
out an app concept

or idea in record
time.

Bring your app
to the the other

platform

Prototype a new
app idea

Four ways to use Flutter today

Summary

● Three core pillars of Flutter
○ High-Velocity Development
○ Expressive and Flexible Toolkit
○ Native iOS and Android apps

● Very different architecture
○ Code compiles to native ARM code
○ UI is rendered with custom rendering framework

● Very portable, very fast, very extensible

Thank you!

More information about Flutter:

http://flutter.io
http://medium.com/flutter-io

