¢Oto; GOTO Copenhagen 2017

copenhagen Conterence Oct. 1-3, 201/

| Told You So!
What every developer should know
about Enterprise Architecture

Agata Przybyszewska

W ollow us @gotocph

¢Oto; GOTO Copenhagen 2017

copenhagen Conference Oct. 1-3, 2017

Click ‘Rate Session’
to rate session
and ask questions.

W ollow us @gotocph

Whak every devemper should know
about Enterprise Architecture

> Difference between building the right thing,
and building the thing right.

> Interactive case study

4

> Stop & think

> Tools from the Enterprise Architecture toolbox

> Empower you, to make right decisions

Huh, Enter prise
Architecture?

Building the right

thing

>What problem are
yvou trying to
solve?

Battles in Zombieland
> Get Ready, Player 1!

Welcome onboard,
Eva!

Eva 1s the new hire
1in the Enterprise
Architecture team of
the Bank.

Decision Poink:
Welcome

Eva, where would you like to
start?

>I would like an introduction to
the team, and the stakeholders:
Characters

> I have seen a “Danger! Zombies!”
sign on the door - can you

explain? Zombiles

Meel the Characters

Danger! Zombies!
> We have this zombie probilem

integration platform

> Holds 3500 point to point
connections ..

> .. between 700 applications

> .. with arcane business logic
embedded

> Significant technical debt

Tool: Technical
Debt

>In our universe, entropy 1is growing, and your
system will get disorganised unless work is
applied (refactoring)
> Technical Debt is the continuous accumulation
of
® shortcuts
® hacks
@ duplication ;?:.’m:“
® spaghetti code
® cxcessive complexity
@ duplication, and general sloppliness
> You pay interest of your debt in reduced
productivity
> Communicate with management in terms of

@ risk

®@ return of investment

@ interest rates
Source:The Agile Samurai by Jonathan Rasmusson

https://www.safaribooksonline.com/library/view/the-agile-samurai/9781680500066/

Tool: Organizational
Accountabiliby

> avoid abandoned orphans
@data assets
®@firewall rules
@ connections
@LTLs
@applications

> make 1t clear which part of
the organisation owns the

accountability

> make the owner drive the
solution

Tool: Get your ducks i

line

> Gather facts, not
OpP1lNnions

> Document events

> Statistics, logs

>Build your case, get
yvour ducks 1n 1line

Decision Poink: Zombies
Roll your dice

> [1..4] A developer approaches you, and
has a worried face:

> [5] Today, there is a major production
incident. All hands on deck!

> [6] You have time to take a look at the
promised reference architecture. We

should start with organisational
accountability.

Eva, we heed a hew database for the

log

>Jimmy 1s working 1n maintenance

>You have told to gather facts, and
they have installed a log monitor

> The problem 1s, that the log
monitor crashes

>»0One of the zombies, a particular
connection, generates over
1.000.000 exceptions/day

>So, should we find a new
monitoring tool?

The Regulator

A regulator comes by
She 1is not happy

Do this or perish !

You have one year !

> Seperation of duties
>Security logging and monitoring
>Site Failover test
>This requires
®a rewrite in most of all 700
zombites applications
@2 change to a hell of a lot of
procedures

Tool: What can Poss&bi.v g0

wrong? |

> What is the worst thing, P . i
that can happen?

> Risk analysis /

T FART

P

® Gather the facts Mars Orbiter, 1999
® Rank according to

probability and
seriousness

® Decide: mitigate or

not?

Danish EFI, 2016

Decision Point: requlator

> This has no value for our
customers

> Do we want to keep our banking

licence, lets start work
immediately:

> Maybe we should change something
in the way this 1s designed?

Onboard the Bosses
> Stakeholder analysis

> Target communication
to audience

> Line up your ducks,
remember?

R

Eva prepares a single picture for the
_ -meting with the bosses T

-
-
N -
> ’
- .
.- i,
- - = -y
444 "'.- o~ a
- - — - - -
o =
>~ - g~
- e -
Fa - . < ".-._ e
_-’ - - -— -
~ g ->-—
"_'.~ — -— = o
SN = : -
p SR -
: ‘!-
— = -
- -
> .
- -
-— o : =
— . -
-t . . & c e
- - e = =~
- - . - 3 -
; - £ e
X 3 2
-~ -
- - >)
- - —
e
et ~ -
-
-
-
- -
- -
—
- 2 - -
——— e - N —

Tool: Goals » ‘Prinaépies > Patbterns >

Capabilities

>You want to build the right
thing, so what should 1t do

> Start with the goals - why are
you doing this?

>»Use principles - your guide to
avold random decisions

>Use patterns - the rough shape
of a solution

>»What capabilities does i1t need
to have?

~Would you tell me, please,
which way I ought to g0 from
here?

-That depends a good deal on
where you want to get to, said
the Cak.

-1 dont much care where-" said
Alice,

~Then it doesnt matter which
way you go," said the Cat.

- Alice In Wonderland
Lewis Carroll

& Evo prepares ah Architecture design document

> Goals
®Organisational flexibility
®Data quality Fel w
®Compliance
>Principles
® All pieces of data shall have a data owner

®A1l]l data assets shall have a canonical
message format, and thou shall use that
only

>Architectural Patterns
®Event Driven Architecture
>Capabilities
®Reliable messaging system

®@Security logging

Decision PC}EME:
bosses
Roll your dice

>[1..3] You don’t have enough
organisational capital, and your natural

charisma 1s not sufficient. Suggestion
rejected.

> [4..6] You suggested target architecture
fits well with the goals of the

organisation. Eva, you are the product
owner.

Go Online, or Go Home
> Everyone 1s 1n panic
@ The Regulator, remember?

> Can one new system really
solve all problems?

> You MUST show results

> Deadline 1s near

o
e
% bt
(=
=z >
=
o

LIFE & WORK PRINCIPLES RAY DALIO

Decision Poink: Go Online, or
<o Home
Roll your dice

> [1..5] Keep crunching
> [6] We are done with a

We Creabked This

Mownster
The MVP has arrived,
but .. er.. 1s not

“exactly” as expected

Actually, we don’t
like 1t

Tool: Experimam& to Fail

VY

\/

Fail fast
Valuable feedback
Agile

Adapt & learn

Self-Operating Napkin

Decision FPoink: Mownster

>Kiss the little monster:

>This 1s the wrong MVP - go back
and crunch more features:

>Wrong turn, somethling 1s wrong
wlith the architecture decision,
go back to design!

Kiss the Little
Mownster

> Embrace the ugliness of
early versions

> Your worst critic 1s
probably right

> Engage stakeholders,
push information

>Get 1t 1n production,
for real

>Is 1t useful?

First Si&j
And the day comes

> We have a producer of
events (customers)

>A canonical message format

>Events pushed to new
system on change

> And there i1is 700 zombies
left

Grovernance
»Whats 1n 1t for me?

@Carrot | F——
»This 1s not for me? ke
: t’} wWhick whit! I Ba?
@Stick 3

>You get what you measure
@measure 1mportant stuff
@ transparency

@ nformation radiator

. Eva prepares a goverhance model

A4 » Tf data is available in the new

=

system, no contact with zombies 1s
allowed

> No changes will be performed (stick)

>Well, 1f you really need 1t, you can
have a 3 month exception

> New system 1s really cool (carrot)

> Measure the number of dead zombies

Happy Ending?

> Keep crunching: 699
zombles left

> Blame: you have made this
complicated target
architecture, and now we
have 699 zombies and 1 new
system!

> Bye: you give up, and find
a new Jjob

copenhagen Conterence Oct. 1-3, 201/

¢Oto; GOTO Copenhagen 2017

Remember to
rate this session
Thank you!

W ollow us @gotocph

()t() GOTO Copenhagen 2017

oopenhagen Conference Oct. 1-3, 2017

9

Did you remember
to rate the previous
session

W ollow us @gotocph

" —
—
— e e
A\ .
R S
S
o oA =2
P g——w R R A\ V) N R R

-~
~ -
' %‘ =
. S ———— — - o — T S —— —— ———r — ———

