
I Told You So!
What every developer should know

about Enterprise Architecture
Agata Przybyszewska

What every developer should know
about Enterprise Architecture

 Difference between building the right thing,
and building the thing right.

 Interactive case study

 Stop & think

 Tools from the Enterprise Architecture toolbox

 Empower you, to make right decisions

Huh, Enterprise
Architecture?

Building the thing
right
 Right choice of
technology

 Right choice of
process

 Continous feedback
& learning

 Agile Manifesto

Building the right
thing

What problem are
you trying to
solve?

Battles in Zombieland
 Get Ready, Player 1!

Welcome onboard,
Eva!
 Eva is the new hire
in the Enterprise
Architecture team of
the Bank.

Decision Point:
Welcome

Eva, where would you like to
start?
I would like an introduction to
the team, and the stakeholders:
Characters

I have seen a “Danger! Zombies!”
sign on the door - can you
explain? Zombies

9

Meet the Characters

Danger! Zombies!

 We have this zombie problem
integration platform

 Holds 3500 point to point
connections …

 … between 700 applications

 … with arcane business logic
embedded

 Significant technical debt

Tool: Technical
Debt
In our universe, entropy is growing, and your
system will get disorganised unless work is
applied(refactoring)
Technical Debt is the continuous accumulation
of

shortcuts
hacks
duplication
spaghetti code
excessive complexity
duplication, and general sloppiness

 You pay interest of your debt in reduced
productivity
 Communicate with management in terms of

risk
return of investment
interest rates

Source:The Agile Samurai by Jonathan Rasmusson

https://www.safaribooksonline.com/library/view/the-agile-samurai/9781680500066/

Tool: Organizational
Accountability
 avoid abandoned orphans

data assets

firewall rules

connections

ETLs

applications

 make it clear which part of
the organisation owns the
accountability

 make the owner drive the
solution

Tool: Get your ducks in
line
Gather facts, not
opinions

Document events

Statistics, logs

Build your case, get
your ducks in line

Decision Point: Zombies
Roll your dice

 [1..4] A developer approaches you, and
has a worried face: Log problems.

 [5] Today, there is a major production
incident. All hands on deck!

 [6] You have time to take a look at the
promised reference architecture. We
should start with organisational
accountability.

Eva, we need a new database for the
log
Jimmy is working in maintenance

You have told to gather facts, and
they have installed a log monitor

The problem is, that the log
monitor crashes

One of the zombies, a particular
connection, generates over
1.000.000 exceptions/day

So, should we find a new
monitoring tool?

The Regulator
A regulator comes by
She is not happy
Do this or perish !

You have one year !

Seperation of duties

Security logging and monitoring
Site Failover test
This requires

a rewrite in most of all 700
zombies applications
a change to a hell of a lot of
procedures

Tool: What can possibly go
wrong?
 What is the worst thing,
that can happen?

 Risk analysis

 Gather the facts

 Rank according to
probability and
seriousness

 Decide: mitigate or
not?

Mars Orbiter, 1999

Danish EFI, 2016

Decision Point: regulator
 This has no value for our
customers : Deny it

 Do we want to keep our banking
licence, lets start work
immediately: Crunch

 Maybe we should change something
in the way this is designed?
Onboard the bosses

Onboard the Bosses
 Stakeholder analysis

 Target communication
to audience

 Line up your ducks,
remember?

Eva prepares a single picture for the
meeting with the bosses

Tool: Goals > Principles > Patterns >
Capabilities

You want to build the right
thing, so what should it do

Start with the goals - why are
you doing this?

Use principles - your guide to
avoid random decisions

Use patterns - the rough shape
of a solution

What capabilities does it need
to have?

-Would you tell me, please,

which way I ought to go from

here?

-That depends a good deal on
where you want to get to, said
the Cat.
-I don’t much care where–” said
Alice.
-Then it doesn’t matter which
way you go,” said the Cat.

- Alice In Wonderland
Lewis Carroll

Eva prepares an Architecture design document
 Goals

Organisational flexibility

Data quality

Compliance

Principles

 All pieces of data shall have a data owner

All data assets shall have a canonical
message format, and thou shall use that
only

Architectural Patterns

Event Driven Architecture

Capabilities

Reliable messaging system

Security logging

risk

Decision point:
bosses
Roll your dice

[1..3] You don’t have enough
organisational capital, and your natural
charisma is not sufficient. Suggestion
rejected.

 [4..6] You suggested target architecture
fits well with the goals of the
organisation. Eva, you are the product
owner.

Go Online, or Go Home
Everyone is in panic

The Regulator, remember?

 Can one new system really
solve all problems?

You MUST show results

Deadline is near

Tool: Idea Meritocracy
set up structures to
ensure ideas emerge

 let the best idea win

 voting, sharing

Decision Point: Go Online, or
Go Home
Roll your dice

[1..5] Keep crunching

[6] We are done with a
Minimal Viable Product
(MVP)

We Created This
Monster
 The MVP has arrived,
but … er… is not
“exactly” as expected

 Actually, we don’t
like it

Tool: Experiment to Fail
 Fail fast

 Valuable feedback

 Agile

 Adapt & learn

Decision Point: Monster
Kiss the little monster: Kiss

This is the wrong MVP - go back
and crunch more features: Crunch

Wrong turn, something is wrong
with the architecture decision,
go back to design! Redesign

Kiss the Little
Monster
Embrace the ugliness of
early versions

Your worst critic is
probably right

Engage stakeholders,
push information

Get it in production,
for real

Is it useful?

First Slay
And the day comes …

 We have a producer of
events (customers)

A canonical message format

Events pushed to new
system on change

And there is 700 zombies
left

700
699

Governance
Whats in it for me?

Carrot

This is not for me?

Stick

You get what you measure

measure important stuff

transparency

information radiator

Eva prepares a governance model
 If data is available in the new
system, no contact with zombies is
allowed

No changes will be performed (stick)

Well, if you really need it, you can
have a 3 month exception

New system is really cool (carrot)

Measure the number of dead zombies

700
699

Happy Ending?
 Keep crunching: 699
zombies left

 Blame: you have made this
complicated target
architecture, and now we
have 699 zombies and 1 new
system!

 Bye: you give up, and find
a new job

