
© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Adrian Cockcroft @adrianco

Cloud Operated Open Source AI Robots

• Applications of Deep Learning

• Apache MXNet Overview

• Apache MXNet API

• Code and DIYrobocars

• Tools and Resources

Applications of Deep Learning

The Challenge For AI: Scale

Data Training Inference At the Edge

The Challenge For AI: Scale

Tons of GPUs and
CPUs

Serverless

Tons of GPUs
Elastic capacity
Pre-built images

IoT and mobile deployment
Mobile optimization

IoT device optimization

PBs of existing data
New data created

on AWS

Data Training Inference At the Edge

AI On AWS Today

Fulfilment &
logistics

Search &
discovery

Existing
products

New
products

Thousands Of Amazon Engineers Focused On
Machine Learning

At AWS

Deep Learning using MXNet @Amazon

• Applied Research
• Core Research
• Alexa
• Demand Forecasting
• Risk Analytics
• Search
• Recommendations
• AI Services | Rek, Lex, Polly

• Q&A Systems
• Supply Chain Optimization
• Advertising
• Machine Translation
• Video Content Analysis
• Robotics
• Lots of Computer Vision..
• Lots of NLP/U..

*Teams are either actively evaluating, in development, or transitioning to scale production

Early detection of
diabetic complications

FDA-approved
medical imaging

Sports Analytics

Computational
knowledge engine

Online grocery
delivery services

New Pinterest Lens mobile
app uses TensorFlow to let

users find pins based on the
pictures they take

Autonomous Driving Systems

Real Time, Per Pixel Object Segmentation

Centimeter-accurate Positioning

Easy to Use AI
Services

AI Platform

Open Source
AI Engines

Amazon
Rekognition

Amazon
Polly

Amazon
Lex

More to come
in 2017

Amazon
Machine Learning

Amazon Elastic
MapReduce

Spark &
SparkML

More to come
in 2017

Apache
MXNet Caffe Theano KerasTorch CNTK

Amazon AI: Democratized Artificial Intelligence

TensorFlow

P2 16xGPU
Instance ECS Lambda

AWS
Greengrass
IoT

FPGAG2 & Elastic
GPU

More to
come
in 2017

Cloud
Hardware on
Demand

S E R V I C E S

P L A T F O R M S

Chat
Amazon Lex

Speech
Amazon Polly

Vision
Amazon Rekognition

E N G I N E S

I N F R A S T R U C T U R E

Amazon ML Spark & EMR Kinesis Batch ECS

GPU CPU IoT Mobile

Apache MXNet Caffe 2 Theano PyTorch CNTKTensorFlow

AI In The Hands Of Every DeveloperAmazon Rekognition: Object And Scene Detection

Boat 99.3%

Plant 95.1%

Harbor 94.8%

Yacht 78.1%

Dock 75.7%

City 72.4%

Architecture 71.8%

Urban 63.9%

Building 62.3%

Marina 60.3%

Plaza 51.1%

Spire 50.8%

Neighborhood 50.7%

Flower 50.6%

Waterfront 94.8%

Amazon Rekognition: Facial Analysis

Age Range 38-59

Beard: False 84.3%

Emotion: Happy 86.5%

Eyeglasses: False 99.6%

Eyes Open: True 99.9%

Gender: Male 99.9%

Mouth Open: False 86.2%

Mustache: False 98.4%

Smile: True 95.9%

Sunglasses: False 99.8%

Landmarks
EyeLeft

EyeRight
Nose

MouthLeft
MouthRight

LeftPupil
RightPupil

LeftEyeBrowLeft
LeftEyeBrowRight

LeftEyeBrowUp
:

Amazon Rekognition: Facial Verification

Similarity: 98%

Amazon Rekognition: Facial Recognition

“The temperature
in Washington is 75
degrees Fahrenheit”

Generate Lifelike Speech
With Amazon Polly

47 voices 24 languages

Including: Danish, Swedish, Norwegian

“The temperature in
Chicago, Illinois is 75
degrees Fahrenheit”

“The temperature
in Chicago, IL is

75˚F”
Amazon Polly

Amazon Polly Customers

Amazon Lex
Speech recognition and natural language understanding

Automatic speech
recognition

Natural language
understanding

“What’s the
weather

forecast?”

Amazon Lex

Weather
forecast

Amazon Lex
Speech recognition and natural language understanding

Automatic speech
recognition

Natural language
understanding

“What’s the
weather

forecast?”

Amazon Lex

“It will be
sunny

and 75F”

Weather
forecast

“It will be sunny
and 75 degrees

Fahrenheit”

Amazon Polly

Amazon Lex

“It will be
sunny

and 75F”

“What’s the
weather

forecast?”

Weather
forecast

Speech recognit ion and natural language understanding

Amazon Lex
Automatic speech

recognition
Natural language

understanding

Amazon Lex Customers

Easy to set
up and

manage

Scalable and
elastic

Pay as
you go

Reliable Open
platform

Amazon Connect
Simple to use, cloud-based contact center

Amazon Connect Contact Center Uses
Amazon Lex For Natural Conversations

Securing Sensitive Data Is Job Zero

Manual
process

Time-
consuming

Inaccurate Expensive

Identifying And Protecting Sensitive Data Can Be Challenging

Growing
volumes of

data

Amazon Macie
AVAILABLE TODAY

Automatically discover, classify, and protect sensitive
data in AWS using Machine Learning

Introducing Amazon Macie

Understand where
sensitive data is

located and how it
is accessed

Automatically
monitor for
anomalies

Automatically
discover and

classify your data

Alert your
security team

when anomalies
are detected

Gain Visibility Into Globally Shared Content

Identify anomalous accesses

Implementing Continuous Compliance
GDPR, PCI, PII

Customers Using Amazon Macie

Continuous insights into cloud
infrastructure and practices

Securing PII and alerting
to access anomalies

Delivering instant information and
detail in the dashboard

We support, use and tune Keras,
Tensorflow and Caffe, but

Apache MXNet is the deep
learning framework
of choice for AWS

Tutorial introduction:
http://gluon.mxnet.io/

Apache

Apache MXNet

Programmable Portable High Performance
Near linear scaling

across hundreds of GPUs
Highly efficient

models for mobile
and IoT

Simple syntax,
multiple languages

Why Apache MXNet?

Open Model Better Performance
Excellent scalability
Optimized stack for

deep learning on AWS

Accepted into the
Apache Incubator
Broad contributions
e.g. Apple Core ML

Ideal

Inception v3

Resnet

Alexnet

0

64

128

192

256

1 2 4 8 16 32 64 128 256

Scaling With Apache MXNet: 88% Efficiency

GPU Count
16 per P2 Instance

Tested to 16xP2
Instance cluster

Apache MXNet Introduction

AWS Deep Learning AMIs: One-Click Deep Learning

Kepler, Volta
& Skylake

Apache MXNet
TensorFlow Caffe2,

CNTK Keras,
Theano, Torch

Python 3 Jupyter
Notebooks
& Examples

Training Artificial Intelligence With GPUs

Core of the next AWS GPU instance family

Custom built for artificial intelligence

Train in hours, not days

NVIDIA Volta

MXNet is already optimized for Volta

One-Click GPU & CPU
Open Source

Deep Learning
Installed, Tested, Tuned

Bootable Machine Image

AWS Deep Learning AMI

Up to~40k CUDA cores on P2
Apache MXNet

TensorFlow
Theano

Caffe & Caffe 2
Torch
Keras

Pre-configured CUDA drivers,
MKL

Anaconda, Python3
Ubuntu or Amazon Linux

+ CloudFormation template

+ Container Image

Apache MXNet

Programmable Portable High Performance
Near linear scaling
across hundreds of GPUs

Highly efficient
models for mobile
and IoT

Simple syntax,
multiple languages

Open
Governance Tuned On AWS

Optimized performance and
scalability on AWS GPUs

Accepted into the
Apache Incubator

Apache MXNet | Collaborations and Community
Diverse Community

0 20,000 40,000 60,000

Yutian Li (Stanford)
Nan Zhu (MSFT)

Liang Depeng (Sun Yat-sen U.)
Xingjian Shi (HKUST)

Tianjun Xiao (Tesla)
Chiyuan Zhang (MIT)

Yao Wang (AWS)
Jian Guo (TuSimple)

Yizhi Liu (Mediav)
Sandeep K. (AWS)

Sergey Kolychev (Whitehat)
Eric Xie (AWS)

Tianqi Chen (UW)
Mu Li (AWS)

Bing Su (Apple)

*As of 3/30/17
**Amazon @35% of Contributions

Try out Keras models on MXNet instead of Tensorflow
Also see https://medium.com/@julsimon/keras-shoot-out-tensorflow-vs-mxnet-51ae2b30a9c0

Faster, smaller and more accurate…

Deep Learning Framework Comparison
Apache MXNet TensorFlow Cognitive Toolkit

Industry Owner N/A – Apache
Community Google Microsoft

Programmability Imperative and
Declarative Declarative only Declarative only

Language
Support

R, Python, Scala, Julia,
C++. Javascript, Go,

Matlab, Perl...

Python, C++.
Experimental Go and

Java

Python, C++,
Brainscript.

Code Length|
AlexNet (Python) 44 sloc 107 sloc using TF.Slim 214 sloc

Memory Footprint
(LSTM) 2.6GB 7.2GB N/A

Apache MXNet | Amazon Strategy

Integrate with
AWS Services

Bring Scalable Deep
Learning to EMR,
Lambda, ECS and
many more..

Foundation for
AI Services

Higher Velocity for AI
Services, Research
and Core AI
Development

Leverage the
Community

Community brings
velocity and
innovation with no
industry ownership
Safest for long term
investment

Apache MXNet API

Apache MXNet | The Basics
• NDArray: Manipulate multi-dimensional arrays (tensors) in a command line

paradigm (imperative).

• Symbol: Symbolic expression for neural network flows (declarative).

• Module: Intermediate-level and high-level interface for neural network training
and inference.

• Loading Data: Feeding data into training/inference programs.

• Mixed Programming: Training algorithms developed using NDArrays in concert
with Symbols.
https://medium.com/@julsimon/an-introduction-to-the-mxnet-api-part-1-848febdcf8ab

import numpy as np
a = np.ones(10)
b = np.ones(10) * 2
c = b * a
d = c + 1

• Straightforward and flexible.
• Take advantage of language

native features (loop,
condition, debugger).

• E.g. Numpy, Matlab, Torch, …

• Hard to optimize

PROS

CONSEasy to tweak
in Python, R, Perl etc.

Imperative Programming

• More chances for
optimization

• Separates flow structure
• E.g. TensorFlow, Theano,

Caffe

• Less flexible, hard to debug

PROS

CONSC can share memory with
D because C is deleted
later

A = Variable('A')
B = Variable('B')
C = B * A
D = C + 1
f = compile(D)
d = f(A=np.ones(10),

B=np.ones(10)*2)

A B

1

+

X

Declarative Programming

0.2
-0.1
...
0.7

Input Output

1 1 1
1 0 1
0 0 0

3

mx.sym.Pooling(data, pool_type="max", kernel=(2,2), stride=(2,2)

lstm.lstm_unroll(num_lstm_layer, seq_len, len, num_hidden, num_embed)

4 2
2 0 4=Max

1
3
...
4

0.2
-0.1
...
0.7

mx.sym.FullyConnected(data, num_hidden=128)

2

mx.symbol.Embedding(data, input_dim, output_dim = k)

Queen

4 2
2 0 2=Avg

Input Weights

cos(w, queen) = cos(w, king) - cos(w, man) + cos(w, woman)

mx.sym.Activation(data, act_type="xxxx")

"relu"

"tanh"

"sigmoid"

"softrelu"

Neural Art

Face Search

Image Segmentation

Image Caption

“People Riding Bikes”

Bicycle, People,
Road, Sport
Image Labels

Image

Video

Speech

Text

“People Riding Bikes”

Machine Translation

“Οι άνθρωποι
ιππασίας ποδήλατα”

Events

mx.model.FeedForward model.fit

mx.sym.SoftmaxOutput

Anatomy of a Deep Learning Model

mx.sym.Convolution(data, kernel=(5,5), num_filter=20)

Deep Learning Models

Do It Yourself - Robot Racing Cars

Donkey

DIYrobocars Meetup
https://www.meetup.com/diyrobocars/
Follow @DIYrobocars for updates

Common Implementation ~$200
1:16 scale RC Truck + Raspberry Pi3 + Camera + EC2
https://github.com/wroscoe/donkey software

Camera feeds Donkey software with Keras or MXNet model, trained
(slowly) on laptop or (quickly) on EC2 GPU instance

Will Roscoe wrote Donkey
Adrian built Donkey Hoté and instigated…
Sunil Mallya added MXNet model and got AWS officially involved

Donkey

Donkey Hoté’s first action…

Donkey

How The Donkey Software Works

GP2 Instance
EBS Volume

Systems
Manager

RunCommand Donkey

Raspberry Pi3

Donkey

Register IP and
Run commands

Laptop to run commands
browse training data
and train model on EC2

Copy training data to EC2 and
Model to Raspberry Pi with rsync

Phone WiFi hotspot and browser
based UI to control donkey

def default_categorical():

from keras.layers import Input, Dense, merge

from keras.models import Model

from keras.layers import Convolution2D, MaxPooling2D, Reshape, BatchNormalization

from keras.layers import Activation, Dropout, Flatten, Dense

img_in = Input(shape=(120, 160, 3), name='img_in') # First layer, input layer, Shape comes from camera.py resolution, RGB

x = img_in

x = Convolution2D(24, (5,5), strides=(2,2), activation='relu')(x) # 24 features, 5px5p kernel (convolution, feature) window, 2wx2h stride, relu

x = Convolution2D(32, (5,5), strides=(2,2), activation='relu')(x) # 32 features, 5px5p kernel window, 2wx2h stride, relu activatiion

x = Convolution2D(64, (5,5), strides=(2,2), activation='relu')(x) # 64 features, 5px5p kernal window, 2wx2h stride, relu

x = Convolution2D(64, (3,3), strides=(2,2), activation='relu')(x) # 64 features, 3px3p kernal window, 2wx2h stride, relu

x = Convolution2D(64, (3,3), strides=(1,1), activation='relu')(x) # 64 features, 3px3p kernal window, 1wx1h stride, relu

x = Flatten(name='flattened')(x) # Flatten to 1D (Fully connected)

x = Dense(100, activation='relu')(x) # Classify the data into 100 features, make all negatives 0

x = Dropout(.1)(x) # Randomly drop out (turn off) 10% of the neurons (Prevent overfitting)

x = Dense(50, activation='relu')(x) # Classify the data into 50 features, make all negatives 0

x = Dropout(.1)(x) # Randomly drop out 10% of the neurons (Prevent overfitting)

categorical output of the angle

Connect every input with every output, output 15 hidden units. Use Softmax to get percentage. 15 categories, find best one based off percentage 0.0-1.0

angle_out = Dense(15, activation='softmax', name='angle_out')(x)

continous output of throttle

throttle_out = Dense(1, activation='relu', name='throttle_out')(x) # Reduce to 1 number, Positive number only

model = Model(inputs=[img_in], outputs=[angle_out, throttle_out])

model.compile(optimizer='rmsprop',

loss={'angle_out': 'categorical_crossentropy',

'throttle_out': 'mean_absolute_error'},

loss_weights={'angle_out': 0.9, 'throttle_out': .001})

return model

One of the Keras model options for Donkey

Robocar Rally 2017

at AWS re:Invent
SUNDAY, NOV. 26 | 6:00PM – 10:00PM
MONDAY, NOV. 27 | 7:00AM – 12:00AM

Registration for Robocar Rally 2017 will launch on Oct. 19 as part of the Reserved Seating launch
https://reinvent.awsevents.com/learn/robocar-rally/

https://aws.amazon.com/blogs/ai/build-an-autonomous-vehicle-on-aws-and-race-it-at-the-reinvent-
robocar-rally/

Additional Resources
MXNet Resources
• MXNet Blog Post | AWS Endorsement

• http://www.allthingsdistributed.com/2016/11/mxnet-default-framework-deep-learning-aws.html
• Read up on MXNet and Learn More:

• See gluon.mxnet.io https://github.com/dmlc/mxnet/
• Re:Invent MXNet Recommender Systems Talk by Leo Dirac

• https://www.portal.reinvent.awsevents.com/connect/sessionDetail.ww?SESSION_ID=8591
AWS Resources: follow Julien Simon @julsimon, Sunil Mallya @sunilmallya
• Deep Learning AMI

• https://aws.amazon.com/marketplace/pp/B01M0AXXQB | Amazon Linux
• https://aws.amazon.com/marketplace/pp/B06VSPXKDX | Ubuntu

• CloudFormation Template Instructions
• https://github.com/dmlc/mxnet/tree/master/tools/cfn

• Deep Learning Benchmark
• https://github.com/awslabs/deeplearning-benchmark

• MXNet on Lambda
• https://github.com/awslabs/mxnet-lambda

• MXNet on ECS/Docker
• https://github.com/awslabs/ecs-deep-learning-workshop

THANK YOU!

@adrianco

