
Autonomous microservices
for a Financial System

Jeppe Cramon - @jeppec

Chief Architect - INPAY

Let’s start with the end in mind

2

Applications

3

iOS Homebanking Customer information

Legal and contract information

Accounts

iOS Homebanking

Customer information

Legal and contract information

Accounts

Credit card

Mortgage loans

Web banking portal

Bank Backoffice application

Applications form compositions

6

7

8

Widget Widget

Page

Widget

Widget

Widget Widget

• Overall structure of the page
is “owned” by the application.

• Each widget is independent

Composite page layout

Widget Widget Widget

Composite page example

Page Context:
{id: ISBN-10 0-321-83457-7 }

Images Books

Reviews

Pricing

Inventory

OthersAlsoBought

Pricing

Reviews

Books

Images

Books

How could we support this?

11

One underlying domain
model to solve it all?

Reality rears its ugly head

The result is often rigidity

Changing one thing requires you to modify a lot of
other code to make the codebase consistent again

14

…fragility

15

When you change a thing you end up
breaking something else!

If we do it wrong, the end result is

“Nobody is allowed to modify that module!”
or

“Let’s rewrite!”

16

CORE PROBLEM?

High coupling

What is the right level of coupling?

This highly depends on
• How likely are things to change
• And what parts that change together

19

Problem domain analysis

20

Classical domain analysis tends to

21

Result is often fragmented domain logic

Focus on Nouns (Entities)
and retrofit Verbs later

22

If we primarily model around nouns/entities we can
easily violate the SRP

Where a change to requirements
is likely to require changes
to multiple entity classes

23

"We don't sell domains, WE SELL USE CASES!"

Jim Coplien

24

instead of focusing on Nouns!

Focus on Verbs (Use-cases)

25

Also, when discussing use cases with Business Experts

Focus on data fields and NOT on entities

26

Identify what data fields clump together

and what fields that are separate

27

Place the fields in piles

28

But don’t name the piles before you know what they are

This avoids cognitive bias!

29

Let’s illustrate by example…

Give the piles made up names

30

What does INPAY do?

31

PayIn

What does INPAY do?

32

PayOut

INPAY data fields

Green

Bank Account Transactions (Debit/Credit)
Virtual Bank Account Transactions (Debit / Credit)
Virtual Bank Account Settlement cycle
Service Agreement Monthly fee / Wire transfer fees / …

Red

Bank Account Currency
Bank Country of operation
Bank Fees
Bank Cutoff Times
Bank Allowed Industries / Verticals / IIC’s
Disbursement/Collection/… - Quote
Disbursement/Collection/… – Request
Service Agreement – Fees / Cutoff Times / Currency Agreements / etc.

Blue

Bank Identifiers (BIC, …)
Bank Contact Details
Bank Account Identifiers (IBAN, …)

Now with names…

Virtual Banking

Bank Account Transactions (Debit/Credit)
Virtual Bank Account Transactions (Debit / Credit)
Virtual Bank Account Settlement cycle
Service Agreement Monthly fee / Wire transfer fees / …

PSP

Bank Account Currency
Bank Country of operation
Bank Fees
Bank Cutoff Times
Bank Allowed Industries / Verticals / IIC’s
Disbursement/Collection/… - Quote
Disbursement/Collection/… – Request
Service Agreement – Fees / Cut off Times / Currency Agreements / etc.

Banking

Bank Identifiers (BIC, …)
Bank Contact Details
Bank Account Identifiers (IBAN, …)

What are the these problem domain piles?

Bounded Contexts

35

Solution domain design

36

If we align the problem domain with the solution domain

PSP Virtual BankingBanking

UI

BL

DAO

UI

BL

DAO

UI

BL

DAO

Which is very different from

“The” DB

UI

Logic

Data Access

What are the solution domain piles?

Services

39

A Service is

• The technical authority for a given bounded context
• It is the owner of all the data and business rules that support this bounded context

– everywhere
• It forms a single source of truth for that bounded context

http://udidahan.com/2010/11/15/the-known-unknowns-of-soa/

But where do microservices fit into this?

41

Microservices promise a solution to our problem

Monolith

Microservice Microservice

Microservice MicroserviceMicroservice

Microservice

Microservice

There’s never time to do it right

But there’s always time to do it over

43

Service design

44

If we want a scalable and loosely coupled design

We could seek inspiration from…

45

Life Beyond Distributed Transactions by Pat Helland

1. How do we split our data
2. How do we identify our data
3. How do we communicate between our services

1. How do we split our data

Data must be collected in pieces called aggregates. These aggregates should be
limited in size (but not smaller), so that, after a transaction they are consistent.

Rule of thumb:
One transaction involves only one aggregate.

DOMAIN DRIVEN DESIGN
The term Aggregate comes from DDD

Aggregates

Invoice

InvoiceLine

*

Account *

What:
• Cluster coherent Entities and Value Objects,

with complex associations into Aggregates
with well defined boundaries.

• Choose one entity to be root and control
access to objects inside the boundary
through the root.

Motivation:
Control invariants and consistency through the aggregate root.

Ensuring consistency & transactional boundaries for Distributed scenarios!

Root

*

*

2. How do we identify our data

According to Pat Helland we need to be able to uniquely identify each Aggregate
using an ID.
• This ID will usually a UUID/GUID
• Aggregates refer to each other by their ID

• they NEVER use memory pointers, join tables or remote calls

{21EC2020-3AEA-4069-A2DD-08002B30309D}

2122 (approximately 5.3×1036) combinations

Services/Bounded Contexts and Aggregates

Sales

PSP

Virtual Banking

Customer

customerId
…

Contract

contractId
customerId
…

VBFeeSchedule

contractId
…

PSPFeeSchedule

contractId
…

BillingTemplate

contractId
…

3. How do we communicate between our services

• What do we do when our use case involves more than one aggregate and therefore
likely more than one service?

Synchronous calls are the crystal meth of programming

At first you make good progress but then the sheer horror becomes evident
when you realise the scalability limitations and how the brittleness holds
back both performance and development flexibility. By then it is too late to
save.

http://www.infoq.com/news/2014/10/thompson-reactive-manifesto-2

We need the reactive properties and then apply
protocols for the message interactions. Without
considering the protocols of interaction this world
of micro-services will become a coordination
nightmare.

Martin Thompson

WHAT’S THE CHALLENGE WITH USING
RPC/REST/… BETWEEN SERVICES?

Synchronous calls lower our tolerance for faults

• When you get an IO error
• When servers crash or restarts
• When databases are down
• When deadlocks occurs in our databases

• Do you retry?
With synchronous style Service interaction we can loose business data if there’s no automatic retry
Or we risk creating data more than once if the operation isn’t idempotent*

Client Server

Duplicated
Response

Duplicated Request
Processing

Response

Request Processing

The same message can be
processed more than once

*Idempotence describes the quality of an
operation in which result and state does not
change if the operation is performed more
than 1 time

Also remember: REST isn’t magic!

WITH CROSS SERVICE INTEGRATION WE’RE
BOUND BY THE LAWS OF DISTRIBUTED
COMPUTING

The 8 Fallacies of Distributed Computing
These fallacies are assumptions architects, designers and developers of
distributed systems are likely to make. The fallacies will be proven
wrong in the long run - resulting in all sorts of troubles and pains for
the solution and architects who made the assumptions.

1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn't change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

See http://www.rgoarchitects.com/Files/fallacies.pdf for a walkthrough of the fallacies and why they’re fallacies

Essential complexity of 2 way integration

Component
C

Component
B

Component
A

UI

Service Service

B:Service()è
call C:Service()
call A:Service()
commit()

Service

Local transaction between
Component A, B and C

B:Service()è
call C:Service()
call A:Service()
if (A:Call-Failed:Too-Busy?)

Wait-A-While()
call A:Service()
if (A:Call-Failed:Too-Busy?)

Wait-A-Little-While-Longer()
call A:Service()
if (A:Call-Failed:IO-Error?)

Save-We-Need-Check-If-Call-A-Succeded-After-All
AND We-Need-To-Retry call C:Service and call B:Service
AND Tell-Customer-That-This-Operation-Perhaps-Went-Well

if (A:Call-Went-Well?)
commit()

Accidental complexity from distributed service integration

Component
C

Component
BSystem A

UI

Service Service Service

Local transaction between
Component B and C

Service autonomy

Component
B

Component
C

Component
A

System X
Service A

Component
B

Component
C

System X

Slow/unreliable network
Different SLA
Slow system

Clarification of Autonomy vs. Authority

Definition of Autonomy
A service is autonomous if it doesn’t directly depend on another service to complete
its work. It can determine on its own what to do.

Definition of Authority
A service is the authority if other services needs to ask it for data or instruct it to
perform a task on their behalf for them to complete their job

Autonomy

Authority

SERVICES ARE AUTONOMOUS
For a service to be autonomous is must NOT share state

SERVICES ARE AUTONOMOUS
Autonomy is essential for
Scalability (scale out clustering)
Reliability (fail over clustering)

SERVICES ARE AUTONOMOUS
Autonomy is essential for
Reusability
Adaptability

Coupling matrix*

* Modified version of Ian Robinson’s matrix: http://iansrobinson.com/2009/04/27/temporal-and-behavioural-coupling/

Behavioral
coupling

Temporal
coupling

Low High

Low

High

Event oriented Command oriented

Emergency services Distributed 3 layer

WE NEED TO CHANGE FOCUS
FROM SHORT TECHNICAL
TRANSACTIONS

To long running business transactions
supporting business processes

Using Business Events to drive Business Processes

Sales Service

Shipping

Billing

Sales

Customers

M
es

sa
ge

 C
ha

nn
el

Online Ordering System

Web Shop
(Composite UI)

Billing Service

Shipping Service
Order

Accepted
Event

AcceptOrder
Command

The sales
fulfillment

processing can
now begin…

Events

An Event is non-prescriptive of what should happen in other parts of the
system. It leaves this open to the recipients, so that they themselves determine
what to do based on occurrence of the event.

Events always carry a name in its past-tense form: OrderWasAccepted,
OrderHasShipped, CustomerWasReimbursed

Other qualities
• Immutable, i.e. content cannot be changed
• Always carries the ID of the Aggregate it relates to
• An event can and will typically will be published to multiple consumers.

• The publisher of the event does not know who the recipients are
• And it doesn’t know what the recipients intend to do with the event

“An Event describes something that HAS happened”

Choreographed Event Driven Processes

Sales Service
Order

Accepted

Invoicing Service

Order Fulfilment
(Saga/

Process-Manager)

Shipping Service

Online Ordering System

M
es

sa
ge

 C
ha

nn
el

 (e
.g

. a
 T

op
ic

)

Order
Accepted

Order
Accepted

Customer
Billed

Customer
Billed

Order
Approved

Order
Approved

Works as a Finite
State Machine

(WorkFlow)
handling the life

cycle of Shipping and
thereby forms a very

central new
Aggregate in the

System

SERVICES AT INPAY

Services/Business-capabilities in INPAY

Currency
Service

Banking
Service

Identity
Management

Service

Sales
Service

PSP
Service

3rd party
Providers
Service

Virtual
Banking
Service

IT
Operations

Compliance
Service

Service and deployment

• A Service represents a logical responsibility
boundary

• Logical responsibility and physical deployment of a Service DOES NOT have to be 1-to-1
• It’s too constraining
• We need more degrees of freedom
• Philippe Krutchen 4+1 views of architecture: Logical and Physical designs should be independent of

each other

A service needs to be deployed everywhere its data is needed

We need more fine grained building blocks

Service Microservices
1..*

Is implemented by

A Service is the technical authority of a specific
Bounded-Context/Business Capability
e.g. Sales, Shipping, Billing

Service vs Microservices

Service Microservice
1..*

Is implemented by

Service vs Microservices

Microservices are a division of Services along Transactional boundaries (a transaction stays
within the boundary of a Microservice)

Microservices are the individually logical deployable units of a Service with their own
Endpoints. Could e.g. be the split between Read and Write models (CQRS) - each would be
their own Microservices

A Service represents a logical boundary

77

Service

Microservice

Microservice Microservice

Microservice

Services are the corner stone

• We talk in terms of Services capabilities and the processes/use-cases they support
• Microservices are an implementation detail

• They are much less stable (which is a good thing – it means they’re easier to replace)

Microservices is an architectural style

79

Service deployment
• Many services can be deployed to the same physical server
• Many services can be deployed in the same application

• Application boundary is a Process boundary which is a physical boundary
• A Service is a logical boundary

• Service deployment is not restricted to tiers either
• Part of service A and B can be deployed to the Web tier
• Another part of Service A and B can be deployed to the backend/app-

service tier of the same application
• The same service can be deployed to multiple tiers / multiple applications

• ie. applications and services are not the same and does not share the
same boundaries

• Multiple services can be “deployed” to the same UI page (service mashup)

Be pragmatic

There’s cost in deploying 1000’s of microservices

81

Autonomous Components
Not everything needs to be individually deployable

82

Autonomous-components are logical
deployable units

This means they CAN, but they don’t HAVE to be deployed individually.

Design for Distribution
But take advantage of locality

Be even more pragmatic

In which case we allow other services
to call them using local calls

84

Some services are very stable

AC in code
public class PSPAgreementAc extends HzBackedAutonomousComponent {

public static AutonomousComponentId SERVICE_AC_ID = PSP_SERVICE_ID.ac("psp_agreement_ac");
…

public PSPAgreementAc(CurrencyConverter currencyConverter) {
this.currencyConverter = currencyConverter;

}

@Override
public void onInitialize(IConfigureACEnvironment acSetup) {

acSetup.withAutonomousComponentId(SERVICE_AC_ID)
.usingServiceDataSource()
.withBusConfiguration(cfg -> {

bus.registerAxonReplayableTopicPublisher(InternalTemplateEvents.TOPIC_NAME,
replayFromAggregate(PSPTemplate.class)

.dispatchAggregateEventsOfType(InternalTemplateEvents.class));

bus.subscribeTopic(SERVICE_AC_ID.topicSubscriber("ContractEvents"),
ExternalContractEvents.TOPIC_NAME,
new SalesTopicSubscription(bus));

})
.runOnBusStartup((bus, axonContext) -> {
});

}
}

Autonomous Component

• Can be deployed alone or co-located, together with one or more adapters from the same service
• Works transparently in a clustered environment

Core logic
(use case controllers/aggregates)

Primary/Driving Adapter
GUI / API / …

Primary/Driving Port

Secondary/Driven Adapter
Database/Notifications/…

Secondary/Driven Port

Autonomous Components can be co-deployed together with Application
backends

contract_manager (Spring Boot fat–jar)

sales_contract_ac

sales_customer_ac

sales_contract_manager_adapters

api_psp

psp_fees_ac

psp_contract_manager_adapters

frontend

api_sales

app

libs
contract
customer
fees

A Service represents a logical boundary

88

Service

Autonomous
Component

Autonomous
Component

UI component

UI component

An Application is the plate where Components are
co-deployed

89

Sales service components

PSP service components

…

Applications in INPAY

Identity
Management
Application

Contract
Manager

Application

Treasury
Application

Compliance
Application

Operations
Application

CRM

PSP
Gateway

PSP
Merchant

Application

ERP

Application in code
@Configuration
@ComponentScan(basePackages = { "com.inpay.contractmanager",

"com.inpay.adapters",
"com.inpay.itops.spring" })

public class Application extends InpaySpringBootApplication {
@Override
protected ApplicationIdentifier getApplicationIdentifier() {

return ApplicationIdentifier.from("ContractManager");
}

@Override
protected Collection<AutonomousComponent> getAutonomousComponentsHostedInThisApplication() {

CurrencyExchangeRateAc currencyExchangeRateAc = new CurrencyExchangeRateAc();
return list(

new PSPFeeScheduleAc(currencyExchangeRateAc.getCurrencyConverter()),
new VBFeeScheduleAc(currencyExchangeRateAc.getCurrencyConverter()),
new ContractAc(),
new CustomersAc(),
currencyExchangeRateAc

);
}

public static void main(String[] args) {
SpringApplication.run(Application.class, args);

}
}

AC, autonomy and “shared” service data

Service
DB

DB

Autonomous
Component

Autonomous
Component

Autonomous
Component

Autonomous
Component DB

50 shades of inter service AC Autonomy*

Endpoint Process Database Storage

Shared Shared Shared Shared

Own Shared Shared Shared

Own Own Shared Shared

Own Shared Own Shared

Own Own Own Shared

Own Own Own Own

Lower Autonomy

Higher Autonomy

* No RPC in use!

Infrastructure patterns

94

Distributed

Bus
Topics

Queues

Distributed per Service

EventBus
Distributed

Notifications
Distributed

Broadcast

Distributed

SingleInstance
Task

psp_fees_ac
(deployed on 10.25.26.102)

psp_fees_ac
(deployed on 10.25.26.101)

Bus Bus

Bus Bus

sales_contract_ac
(deployed on 10.25.26.104)

sales_contract_ac
(deployed on 10.25.26.103)

Federated Bus

Create Contract

Sales Service : Contracts_Ac

Contract Manager Application

PSP Service : Agreement_Ac

ContractCreated

ContractCreatedEvent

Publish

PayInTemplateCreated

ContractEvents
<<Topic>>

Client handled subscriptions

• Highly resilient pattern for an Event Driven Architecture that’s backed by Event-
Sourced AC’s

• In this model the publisher of the Events is responsible for the durability of all its
Events, typically to an EventStore/EventLog.

• Each client (subscriber) maintains durable information of the last event it has
received from each publisher.

• When ever the client starts up it makes a subscription to the publisher where it
states from which point in time it wants events published/streamed to it.

• This effectively means that publisher can remain simple and the client (subscriber)
can remain simple and we don’t need additional sophisticated broker infrastructure
such as Kafka+ZooKeeper.

Client handled subscriptions

Publisher

Subscriber
A

Local storage

EventStore

Subscriber
B

Local storage

Topic
Subscription

Topic
Subscription

TopicSubscriptionHandler

TopicSubscriptionHandler

EventEvent

Event Event

EventBus

Event

Event

5 Microservices Do’s

• Identify Business Capabilities (or Bounded Contexts) and split your services according
to them. A service is owned by one team that builds and runs the service. This gives you
proper business and IT alignment and allows pin point accuracy with regards to spending
money to solve problems.

• Spend time to understand the business processes and the domain. At first you must
go slow to go fast. Building microservices properly takes time and is not trivial. Identify
how likely things are to change and what things change together.

• Focus on the business side effects - also know as the Events and make them a first
class principle. Avoid RPC/REST/Request-Response between Services - events are the
API.

• Consider building composite application and Backend’s For Frontend's (BFF’s) to
decouple services further. An application is owned by a dedicated team, but may
borrow developers from service teams.

• Learn from history. Don’t repeat the mistakes that gave (misapplied) SOA a bad
name. Also, microservice might not be as small as you think - we need low coupling as
well as high cohesion :)

5 Microservices Don’ts

• Do not introduce a network boundary as an excuse to write better code - many have
troubles with poorly modularized monoliths and believe that introducing network
between modules magically solves the problem. If you don’t change your thinking and
design, you will end up with a distributed monolith, which has all the disadvantages of a
monolith, the disadvantages of a distributed system and none of the advantages of
microservices

• Don't split the atom! Distributed Transactions are never easy. Learn about the CAP
theorem and avoid Request/Response API’s between Services.

• Don't fall into the trap of “Not my problem”. When working on isolated code
bases teams can loose sight of the big picture.

• Identify the bottlenecks and possible solutions before deciding to split a problem
into one or more microservices. There’s nothing the guarantees that your microservice
scales better than your monolith.

• Don't do big bang rewrites. Move towards microservices gradually while focusing on
functional areas that can replace or support the old monolith. Don’t rewrite core business
while being new to microservices.

Thanks :)

Jeppe Cramon - @jeppec

