
How do you Learn New Skills?
Emily Bache

www.praqma.com

how do you learn new skills?
Emily Bache
@emilybache

http://coding-is-like-cooking.info

As a Professional Programmer -

http://bacheconsulting.com

Emily Bache
Test Automation Specialist

Senior Consultant at Praqma

Author of

“The Coding Dojo Handbook”

@emilybache

emily.bache@praqma.com

mailto:emily.bache@praqma.com

Programming

 fl
ic

kr
: M

at
yl

da
 C

za
rn

ec
ka

Practical Coding Skills
! using IDE shortcuts
! Pair Programming
! Test Driven Development
! Designing good Test Cases
! Refactoring
! Working incrementally, committing

code often
! Designing using SOLID principles
! Object Oriented Paradigm
! Functional Programming Paradigm
! ...

Test Driven Development

Red

GreenRefactor

Why TDD?
design verification:
the code does what

you think it does

work incrementally:
share your changes often,

maintain flow
design benefits:

isolated units should have
 low coupling & high cohesion

refactoring support:
Make changes with

confidence

Wonderful feeling of freedom & productivity!

Self-testing code
You have self-testing code
when you can run a series of
automated tests against the
code base and be confident
that, should the tests pass,
your code is free of any
substantial defects.

http://www.martinfowler.com/bliki/SelfTestingCode.html

— Martin Fowler

http://www.martinfowler.com/bliki/SelfTestingCode.html

Agile Testing Pyramid

a few tests for the whole
stack

many ‘service’ tests, may be
public or test-specific API

majority are unit tests

http://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-
test-automation-pyramid

UI

API

Unit

http://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
http://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid

TDD gives more than self-
testing code

design verification:
the code does what

you think it does

work incrementally:
share your changes often,

maintain flow
design benefits:

isolated units should have
 low coupling & high cohesion

refactoring support:
Make changes with

confidence

Wonderful feeling of freedom & productivity!

Kent Beck in 2009

http://www.threeriversinstitute.org/blog/?p=291

http://www.threeriversinstitute.org/blog/?p=291

Learning to Ski

fli
ck

r u
se

r n
on

an
et

Cross Country skiing

Snowplow

flickr: MichaEli

Parallel turns

fli
ck

r u
se

r n
on

an
et

Test Driven Development

Red

GreenRefactor

Training Course

image: http://www.flickr.com/photos/fboyd/

Learn on-the-job

image: flickr user Lisamarie Babik

Pair Program & Get Stuff Done

The Coding Dojo

Dojo = The place
you go to learn

What happens at a dojo meeting?
! 5 – 15 or so coders
! write code, collaborate, discuss

A Regular Coding Dojo

! Your team meets for a coding dojo every so often
! practice skills you can use in production code

Dojo Principles
! The first rule of the dojo:

" You can’t discuss a technique without code
" You can’t show code without tests

Code without tests simply doesn’t exist!

The Dojo Principles: http://bossavit.com/dojo/archives/2005_02.html

http://bossavit.com/dojo/archives/2005_02.html

Code Kata

! In martial arts, a “Kata” is a
sequence of moves that you
learn.

! Dave Thomas proposed the idea
of the “Code Kata”
" http://codekata.pragprog.com/

! small exercises, that you repeat

http://codekata.pragprog.com

Code Kata - Leap Years

Write a function that returns true or false depending
on whether its input integer is a leap year or not.
A leap year is divisible by 4, but is not otherwise
divisible by 100, unless it is also divisible by 400.

Examples:
 1996 --> true
 2001 --> false
 2000 --> true
 1900 --> false

2 kinds of Practice

Incidental Practice

Deliberate Practice

- Repeatedly doing something you can already
do, and improving at it

Incidental Practice: Good Habits

“I’m not a great programmer;
I’m just a good programmer
with great habits.”

- Kent Beck

quote from p57, “Refactoring” by Martin Fowler

image taken by Martin Fowler at XP2002

US Military training philosophy

“Under pressure, you don’t rise to the occasion, you
sink to the level of your training.

That’s why we train so hard”
-- A US Navy Seal

Experience TDD

• Experience what TDD feels like when it works

• Recognise problems well suited to it

Repeatedly practice the same
Katas

! In Karate there are some
katas everyone learns

! There are some popular
software katas lots of
people have done

Practice

Incidental Practice:
- Repeatedly doing something you can already do,
and improving at it

Deliberate Practice:
- Trying to do something you can’t comfortably do
- breaking down a skill into components you practice
separately

Deliberate Practice
! Need to feel safe
! Need to feel motivated

fli
ck

r u
se

r a
nt

on
y_

m
ay
fie

ld

TDD skills

Designing Test Cases

Refactoring
Safely

Driving Development
with Tests

Designing Clean Code

TDD is a composite skill

TDD skills
Designing Test Cases

Refactoring
Safely

Driving Development
with Tests

Designing Clean Code

In the dojo we can focus on one at a time

TDD skills
Designing Test Cases

Refactoring
Safely

Driving Development
with Tests

Designing Clean Code

Refactoring Katas: Tennis, Yatzy, Gilded Rose…

Tennis Refactoring Kata

ht
tp

s:
//g

ith
ub

.c
om

/e
m

ily
ba

ch
e/

Te
nn

is
-R

ef
ac

to
rin

g-
Ka

ta

TDD skills
Designing Test Cases

Refactoring
Safely

Driving Development
with Tests

Designing Clean Code

SOLID principles Katas: Tyre Pressure, Leaderboard

Tyre Pressure Kata

TDD skills

Designing Test Cases

Refactoring
Safely

Driving Development
with Tests

Designing Clean Code

Diamond Kata, ISBN

Diamond Kata

https://github.com/emilybache/DiamondKata

https://github.com/emilybache/DiamondKata

Diamond Kata

TDD skills

Designing Test Cases

Refactoring
Safely

Driving Development
with Tests

Designing Clean Code

Gilded Rose, Functional Code

Functional Code Kata

https://github.com/emilybache

https://github.com/emilybache

Essential Dojo Elements

! Hold an introduction and retrospective
! Write tests as well as code
! Show your working
! Be a facilitator

Dojo Principles: Mastery

! If it seems hard, find someone who
can explain it.

! If it seems easy, explain to those
who find it hard.

! No-one has mastery in all areas:
everyone will both teach & learn.

Sensei Henri Canditan
 by flickr user Flavio~

http://www.flickr.com/photos/37873897@N06/

Coding Dojos in practice

! Paris Dojo
! Ruby & Python User Groups
! Consultant flown-in for 5 or 6 sessions
! (semi) Regularly at Pagero

Coding Dojos @ Pagero

Once a month

! Standard structure
" Short intro
" 45 minutes coding
" short retrospective
" (optional) repeat Kata

ic
on

s:
 D

ou
bl

e-
J

D
es

ig
n,

 b
al

lic
on

s.
ne

t

One or Two hours

http://ballicons.net

Improving at TDD
http://cyber-dojo.org/

Tests failing Compiler/Syntax Error Tests Passing

TDD at first dojo

After 6 dojos

http://cyber-dojo.org/

Coding Dojo Summary

! Better coding skills
! Teach and Learn in a Group
! Incidental & Deliberate Practice
! Have Fun!

www.praqma.com

how do you learn new skills?
Emily Bache
@emilybache

http://coding-is-like-cooking.info

As a Professional Programmer -

http://bacheconsulting.com

