

Beyond Developer

Dan North atastapod

The Old Testament

$= \frac{1}{2}v_{4} - \frac{1}{2}v_{4} + \frac{1}{2}v_{5} + \frac{1}{2}v_{5} + \frac{1}{2}v_{7} + \frac{1}{2}v_{13} +$	IV. IV. 1 IV. IV. 2 IV. IV. 3 IV. IV. 1 IV. IV.	$ \begin{cases} \mathbf{i} \mathbf{v}_1 = \mathbf{r}_1 \\ \mathbf{i} \mathbf{v}_2 = \mathbf{v}_1 \\ \mathbf{i} \mathbf{v}_1 = \mathbf{r}_1 \\ \mathbf{i} \mathbf{v}_1 = \mathbf{r}_1 \\ \mathbf{i} \mathbf{v}_1 = \mathbf{r}_1 \\ \mathbf{i} \mathbf{v}_1 = \mathbf{v}_1 \\ \mathbf{i} \mathbf{v}_1 = \mathbf{v}_1 \\ \mathbf{i} \mathbf{v}_1 = \mathbf{v}_1 \\ \mathbf{i} \mathbf{v}_1 = \mathbf{v}_2 \end{cases} $	Subtraction of Results. = 2π = $2\pi - 1$ = $2\pi - 1$ = $2\pi - 1$ = $2\pi - 1$ = $\frac{2\pi - 1}{2\pi + 1}$ = $\frac{1}{2} \cdot \frac{2\pi - 1}{2\pi + 1}$ = $-\frac{1}{2} \cdot \frac{2\pi - 1}{2\pi + 1} = \lambda_{4}$ = $\pi = 1$ (= 3)	• 1 • • • •	20000 N 2 1 1 2	200004 E = 1 1 1 1	$ \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2^n} $	2++1	2¢C=== □ 2*		\$0==0\$	0 000 00 00 00 00 00 00 00 00 00 00 00		*¥0 00 00 00	5-00-0-5	•YA 0 0 0	² B, h a defining <i>d</i> freedom.	[2] Bahason SectoralOn Inction.	Z Raha Color	POOOO B
$= \frac{1}{2}v_{4} - \frac{1}{2}v_{4} + \frac{1}{2}v_{5} + \frac{1}{2}v_{5} + \frac{1}{2}v_{7} + \frac{1}{2}v_{13} +$	1 ³ V ₁ 1 ¹ V ₅ 4 ¹ V ₁₃ 2 ³ V ₁₁ 1 ¹ V ₁₀ 1 ³ V ₁₀	$ \begin{cases} \mathbf{i} \mathbf{v}_1 = \mathbf{r}_1 \\ \mathbf{i} \mathbf{v}_2 = \mathbf{v}_1 \\ \mathbf{i} \mathbf{v}_1 = \mathbf{r}_1 \\ \mathbf{i} \mathbf{v}_1 = \mathbf{r}_1 \\ \mathbf{i} \mathbf{v}_1 = \mathbf{r}_1 \\ \mathbf{i} \mathbf{v}_1 = \mathbf{v}_1 \\ \mathbf{i} \mathbf{v}_1 = \mathbf{v}_1 \\ \mathbf{i} \mathbf{v}_1 = \mathbf{v}_1 \\ \mathbf{i} \mathbf{v}_1 = \mathbf{v}_2 \end{cases} $	$= 2n - 1$ $= \frac{2n - 1}{2n + 1}$ $= \frac{2n - 1}{2n + 1}$ $= \frac{1}{2} \cdot \frac{2n - 1}{2n + 1}$ $= -\frac{1}{2} \cdot \frac{2n - 1}{2n + 1} = \delta_{0}$	• 1 •		1 1 1	2 n - 1 	9×+1												
$\begin{array}{c} + {}^{i} v_{s} + {}^{i} v \\ \times {}^{i} v_{2i} \times {}^{i} v \end{array}$	1 W7	$\int dV_{2} = V_{2} \left[\int dV_{2} = V_{2} \right]$. 1		 		0 	1 1 1	 		•••		$\frac{\frac{2n-1}{2n+1}}{\frac{1}{2},\frac{2n-1}{2n+1}}$		$=\frac{1}{2}\cdot\frac{2n-1}{6n+1}-3.$				
$= v_{\rm II}^{-1} v$	n v.,	$ \begin{cases} {}^{A} \nabla_{B}^{e} = {}^{A} e \\ {}^{B} \nabla_{B} = {}^{A} \nabla_{B} \\ \\ {}^{A} \nabla_{B} = {}^{A} \nabla_{B} \\ {}^{A} \nabla_{B} = {}^{A} \nabla_{B} \\ \\ {}^{A} \nabla_{B} = {}^{A} \nabla_{B} \\ \\ {}^{A} \nabla_{B} = {}^{A} \nabla_{B} \\ \\ \\ {}^{A} \nabla_{B} = {}^{A} \nabla_{B} \\ \\ \\ {}^{A} \nabla_{B} = {}^{A} \nabla_{B} \\ \\ \\ \\ {}^{A} \nabla_{B} = {}^{A} \nabla_{B} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	= 2 + 0 = 2 = $\frac{2n}{2} - A_1$ = $B_1 \cdot \frac{2n}{3} = B_1 A_2$ = $-\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_2 \cdot \frac{2n}{3}$ = $u - 2(-2)$		e 			· · · · · · · · · · · · · · · · · · ·	 9a 				 * - 2	$\frac{d n}{2} = \Lambda_1$ $\frac{d n}{2} = \Lambda_1$ \dots	B ₁ . $\frac{2\pi}{2}$ = B ₁ /	$\left\{ -\frac{1}{2}, \frac{2n-1}{2n+1} + B_1, \frac{2n}{2} \right\}$	Ð,			
$-\frac{i\nabla_{e} = i\nabla}{+i\nabla_{1} + i\nabla}$ $+\frac{i\nabla_{1} + i\nabla}{+i\nabla}$ $+\frac{i\nabla_{2} + i\nabla}{+i\nabla}$ $+\frac{i\nabla_{2} + i\nabla}{+i\nabla}$	1 1	$ \left\{ \begin{array}{c} \frac{1}{2} y_{1}^{2} \\ \frac{1}{2} y_{2}^{2} \\ \\ \frac{1}{2} \\ \frac{1}{2} y_{2}^{2} \\ \frac{1}{2} \\ \frac{1}{$	$= 9x - 1$ $= 2 + 1 - 3$ $= \frac{2n - 1}{3}$ $= \frac{2n - 1}{2}$ $= 2n - 2$ $= 3 + 1 = 4$ $= \frac{2n - 2}{4}$	1 1 1 A			••• ••• ••• ••• ••• ••• ••• ••• ••• ••	 	2 n - 1 2 n = 1 2 n - 2 2 n - 2 	3 3 4	2 <u>x = 1</u> 3 0	2 H = 2 4 0	···· ··· ··· ···	$\begin{cases} \frac{g_{n}}{g}, \frac{g_{n}-1}{g} \\ \frac{g_{n}}{g}, \frac{g_{n}-1}{g} \\ \frac{g_{n}-g}{g} \\ = A_{2} \end{cases}$	B3 A3 0	$\left\{ A_{\mu} + B_{\mu} A_{\nu} + B_{\mu} A_{\mu} \right\}$		5) B.		and the second se

1844: All the code in the world

In the beginning...

@tastapod

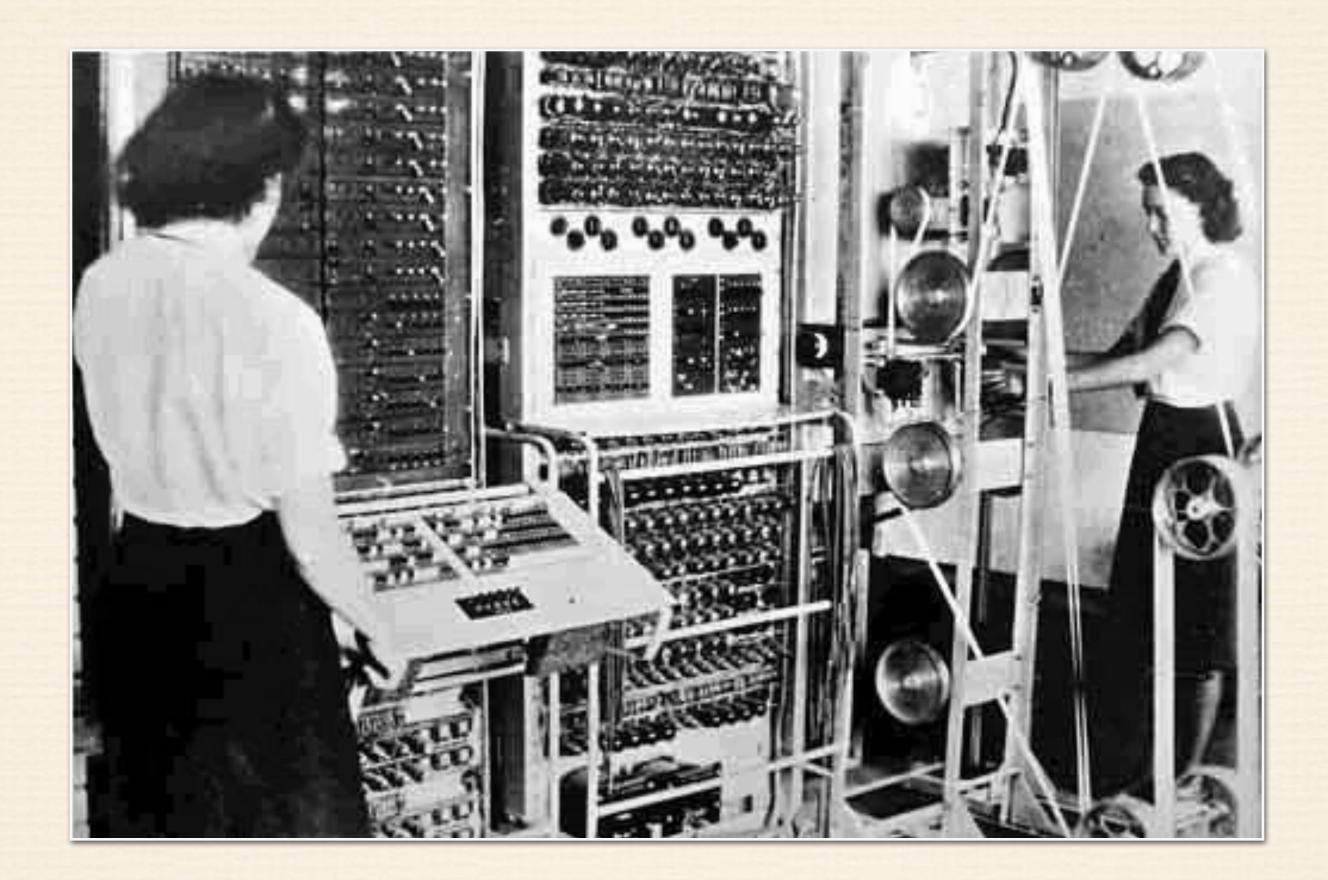
In the beginning...

1844: All the programmers in the world

You wait. Time passes... Thorin waits.

You wait. Time passes... Thorin waits.

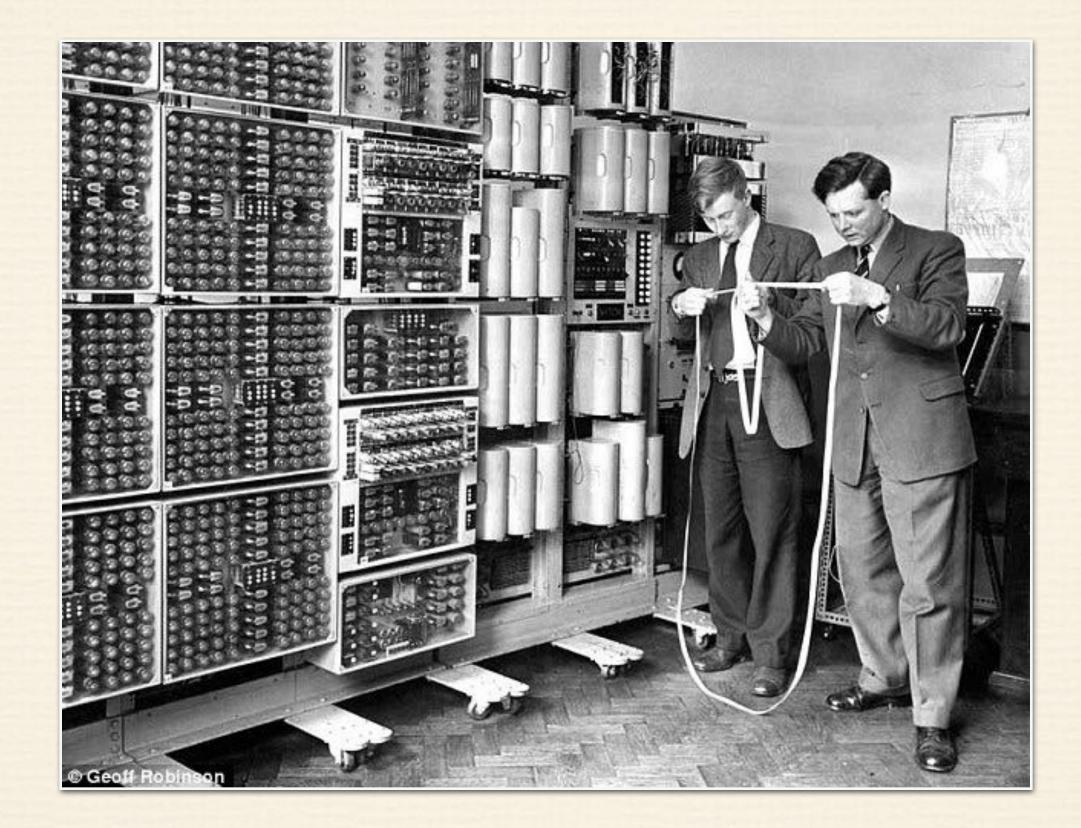
100 years later...


You wait. Time passes...

You wait. Time passes...

You wait. Time passes...

Necessity is the mother of invention...


1944: Programmers hack on a Colossus Mk 2

1960s: Debugging a "WITCH" mainframe in academia

People begin to specialise...

There are Commandments...

* You shall have a Business Requirements Document You shall have a Functional Specification * You shall program in the manner of the Specification You shall have no other Specification before me Analysts shall analyse, Architects shall architect Programmers shall program, Testers shall test

(a)tastapod

And more Commandments...

You shall complete a Formal Change Request
You shall provide Release Documentation
You shall not release to Production yourself, lest you incur the wrath of the Release Manager
You shall not hack on that which is in Production*

* more of a guideline really

The New Testament

Then comes a new Covenant...

The Agile Manifesto

We are uncovering better ways...

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

2001: Programmers drafting the Agile Manifesto, Utah

Iam

Beyond Developer

...a developer ...in a team ... building a product ...on a platform ... in a department ... in an organisation.

Beyond Developer

...a developer ...in a team ... building a product ...on a platform ... in a department ... in an organisation.

learns the language

learns the libraries

monitors the alternatives

learns the toolchain

engages with the community

...a developer

Beyond Developer

...a developer ...in a team ... building a product ...on a platform ... in a department ... in an organisation.

understands the process

understands the roles

collaborates with others

...in a team

...all the others!

attends to the team's health

Beyond Developer

...a developer ...in a team ... building a product ...on a platform ... in a department ... in an organisation.

...building a product

understands the business objective
studies the domain
knows the stakeholders

contributes to the product

...all the stakeholders! the product

Beyond Developer

...a developer ...in a team ... building a product ...on a platform ... in a department ... in an organisation.

...on a platform

understands the technical landscape

understands the path to production

cares about runtime concerns

values automation

contributes to the platform

... not all the automation!

Beyond Developer

...a developer ...in a team ... building a product ...on a platform ... in a department ... in an organisation.

...in a department

understands the wider context
makes local trade-offs
shares their knowledge across t

shares their knowledge across teams

 ...all their knowledge!
 contributes to the department
 influences across the organisation

Beyond Developer

...a developer ...in a team ... building a product ...on a platform ... in a department ... in an organisation.

 projects the organisation's values cares about organisation's reputation

shares their knowledge externally

contributes to the organisation

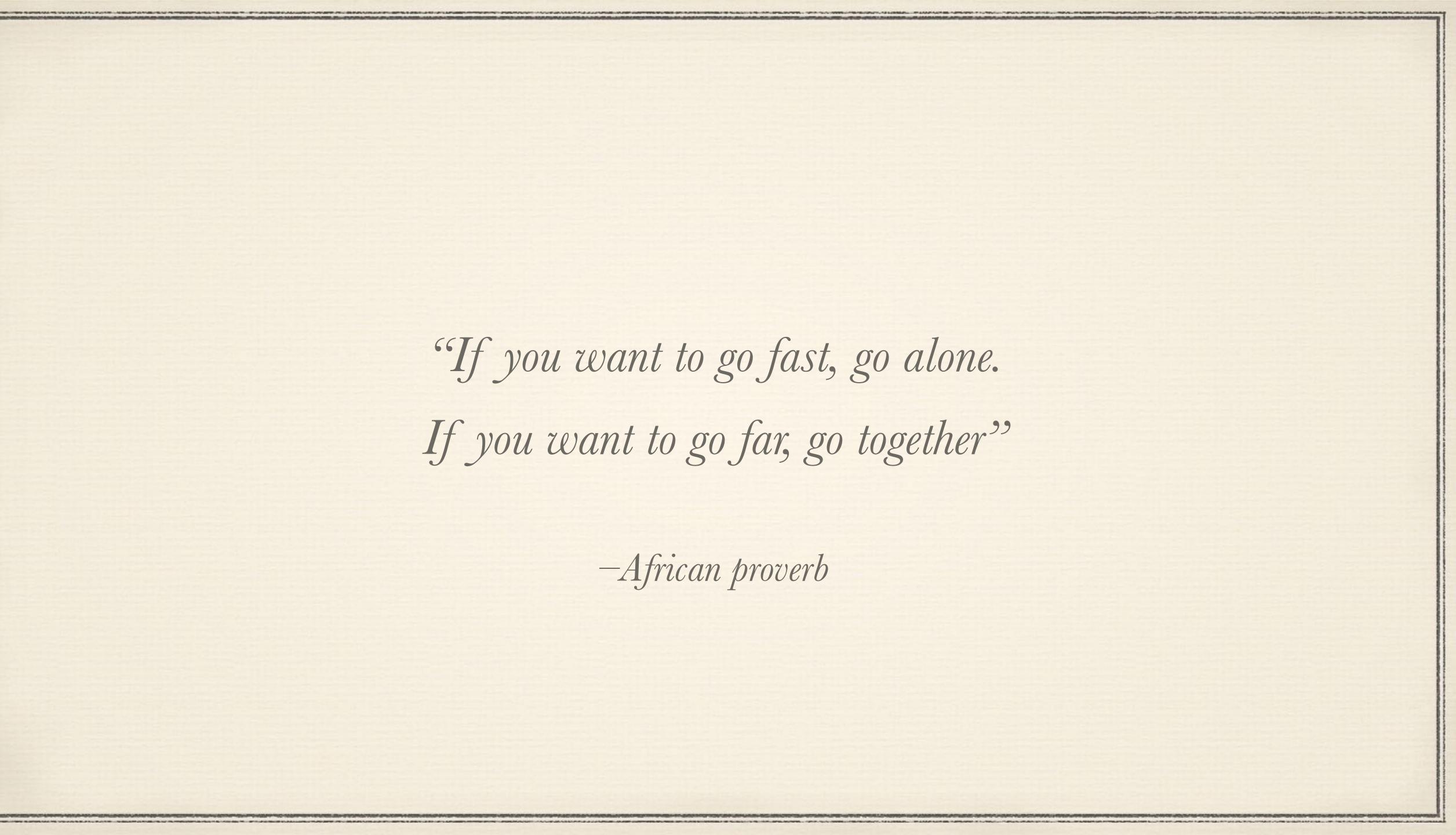
...in an organisation.

... not all their knowledge!

(a)tastapod

Beyond Developer

...a developer ...in a team ... building a product ...on a platform ... in a department ... in an organisation.


You are Beyond Developer

"If you want to go fast, go alone. If you want to go far, go together"

-African proverb

Thank you

Dan North

@tastapod

http://dannorth.net

@tastapod

