
© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Adrian Cockcroft @adrianco
VP Cloud Architecture Strategy

Cloud Trends
Principles, Evolution, and Chaos...

Cloud Native Architecture

Principles and Practice
Adrian Cockcroft

What is
Cloud Native?

Datacenter Native

DATACENTER

Architecture

Infrastructure
Datacenter Native
Architecture
Lives for years

DATACENTER

Cloud Migration
Pay as you go

DATACENTER

Pay up front and
deprecate over
three years

Pay a month later
for the number of
seconds used

Cloud Native Principle
Pay for what you used last month.

Not what you guess you will
need next year.

File tickets and
wait for every step

Self service,
on-demand, no delays

!

VS

!

File tickets and
wait for every step

Self service,
on-demand, no delays

!

VS

!!

File tickets and
wait for every step

Self service,
on-demand, no delays

!

VS

!!
Deploy by filing a
ticket and waiting
weeks or months

Deploy by making an
API call self service
within minutes

Cloud Native Principle
Self service, API driven, automated.

Move from request tickets at every
step to a tracking ticket that records
what happened.

Cloud Native Principle
Instant globally distributed
deployments and data by default.

Chicago

New York

Ohio
U.S.-East-2

Virginia
U.S.-East-1

a

b c

a

b c

Typical Datacenter architecture

Typical cloud architecture
Zones a, b, and c are 10–100km apart

Regions
and Zones

Chicago

New York

Ohio
U.S.-East-2

Virginia
U.S.-East-1

a

b c

a

b c

Regions
and Zones

Failover

Hurricane Sandy

Regions
and Zones
Datacenter Native
Migration to CloudKeep the same configuration
and run MySQL on a cloud
instance yourself.

MySQL
Primary

MySQL
Secondary

Regions
and Zones
Cloud Native Data
Migration

MySQL
Primary

MySQL
Secondary

AWS Aurora
Distribute over all three zones.

Regions
and Zones
Cloud Native Data
Migration

MySQL
Primary

MySQL
Secondary

More resilient within each region.

Cloud Native Principle
Distribute over zones within
a region by default.

Elasticity

DATACENTER

Hard to get over 10% utilization—
need extra capacity in case of peak.

CLOUD

Target over 40% utilization—
no capacity overload issues.

Autoscaling for predictable heavy workloads

Serverless for spiky workloads with idle periods

Cloud Native Principle
Turn it off when it’s idle.
Many times higher utilization
Huge cost savings
Avoids capacity overloads

Versioned
delivery
pipeline

Developer Build
system

Versioned
delivery
pipeline

Developer
0
1

2

3

4
56

7
8

9Build
system

Canary
test

Green
version

Blue
version

Versioned
delivery
pipeline

Developer
0
1

2

3

4
56

7
8

9Build
system

Canary
test

Green
version

Blue
version

Versioned
delivery
pipeline

Developer
0
1

2

3

4
56

7
8

9Build
system

Canary
test

Old
versions

Cloud Native Principle
Immutable code.
Automated builds
Ephemeral instances, containers, and functions
Blue–Green deployments
Versioned services

Pay as you go, afterwards
Self service—no waiting
Globally distributed by default
Cross-zone/region availability models
High utilization—turn idle resources off
Immutable code deployments

Cloud Native Principle

PrinciplesPractice

Cloud Native Practice 2012
Netflix OSS
Instances
Java focus → Spring cloud today

Cloud Native Practice 2014
Docker
Containers
Golang focus → Kubernetes today

Cloud Native Practice 2016
AWS Lambda
Functions and events
Node.js focus → Serverless today

Town Planners

Instances
Risk adverse
Safe but slow
Mature tooling

Pioneers

Serverless
Fastest
development
Low cost
Tooling
emerging

Containers
Efficient
Faster

Settlers

Too many choices
Rapidly evolving
tooling

Too many choices
Rapidly evolving tooling ?

??

CNCF
Cloud Native
Computing
Foundation
A curated collection of
interesting open source
projects that have
broad support

Kubernetes
Orchestration

Prometheus
Monitoring

OpenTracing
Tracing

linkerd
Service Mesh

Fluentd
Logging

gRPC
Remote

Procedure Call

CNCF
Filter

All of
github

CNCF
Cloud Native
Computing
Foundation
A curated collection of
interesting open source
projects that have
broad support

CNCF
Filter

Kubernetes
Orchestration

Prometheus
Monitoring

OpenTracing
Tracing

linkerd
Service Mesh

Fluentd
Logging

gRPC
Remote

Procedure Call

All of
github

CoreDNS
Service

Discovery

Containerd
Container Runtime

rkt
Container
Runtime

Envoy
Service
Mesh

Jeager
Distributed

Tracing

CNI
Networking

AWS (and everyone else)
joined CNCF
Promote Cloud Native to enterprise
customers

Integrate CNCF components into
AWS ECS – CNI, containered, etc.

Integrate Kubernetes with AWS –
installers, IAM, security, etc.

CNCF serverless working group

Blog post
medium.com/@adrianco

Kubernetes AWS ECS

VS

Managed by customers

Single tenant install

Control plane overhead

Version upgrade management

Networking: CNI

IAM integration fixes needed

Managed for you by AWS

Multi tenant service

Just EC2 instances by the second

Doesn’t apply

Moving to CNI

IAM Integrated

Better developer features and APIs today

Improving operational features

Improving AWS integration

Better operational features today

Improving developer APIs – converging
with CNCF components

Improving portability for applications

Finish building and deploying the application
in less time than you spent evaluating
container runtimes…

ECS

Serverless

Kubernetes

Cloud Native Principles
Remain constant as practices evolve.

Evolution of Business Logic

Monolith Microservices Functions

Splitting
Monoliths
Ten Years Ago

Splitting
Monoliths
Ten Years Ago

XML & SOAP

Splitting
Monoliths
TenFiveYears Ago

REST JSON
Fast binary
encodingsSplitting

Monoliths
Five Years Ago

Splitting
Monoliths
TenFive Years Ago

Microservices
Five Years Ago

Microservices
Five Years Agoto Functions

Amazon
Kinesis

Amazon API
Gateway

Amazon SNS

Amazon S3

Amazon
DynamoDB

Amazon
SQS

Standard building brick
services provide standardized
platform capabilities

Amazon SNS

Amazon S3

Amazon API
Gateway

Amazon
SQS

Amazon
Kinesis

Amazon
DynamoDB

Microservices
to Functions

Business Logic
Glue between

the bricks

Standard building brick
services provide standardized
platform capabilities

Amazon SNS

Amazon S3

Amazon API
Gateway

Amazon
SQS

Amazon
Kinesis

Amazon
DynamoDB

Microservices
to Functions

Amazon SNS

Amazon S3

Amazon API
Gateway

Amazon
SQS

Amazon
Kinesis

Amazon
DynamoDB

Microservices
to Functions

Amazon SNS

Amazon S3

Amazon API
Gateway

Amazon
SQS

Amazon
Kinesis

Amazon
DynamoDB

Microservices
to FunctionsEphemeral

Microservices
to
Functions

Ephemeral

Microservices
to

Amazon API
Gateway

Amazon
SQS

Functions
Ephemeral

Microservices
to

Amazon API
Gateway

Amazon
Kinesis

Amazon
DynamoDB

Functions
Ephemeral

Microservices
to

Amazon API
Gateway

Amazon SNS

Amazon S3

Functions
Ephemeral

Amazon SNS

Amazon S3

Amazon API
Gateway

Amazon
SQS

Amazon
Kinesis

Amazon
DynamoDB

Microservices
to
Functions

Ephemeral
When the system is
idle, it shuts down and
costs nothing to run

Evolution of Business Logic

Monolith Microservices Functions

The New De-Normal

Monolithic
Databases

Kitchen Sink
Analogy

De-normalized

Expensive,
Hard to Create
and Run

Monolith

Expensive,
Hard to Create
and Run

ic
DatabaseMonolith

Database Schema
Entity Relationship

Database Schema
Entity Relationship

Database Schema
Entity Relationship

Kitchen Sink
Analogy

Kitchen Sink
AnalogyCleanup

GLASSES

GLASSES

Kitchen Sink
Cleanup

GLASSES

Kitchen Sink
Cleanup

Kitchen Sink
Cleanup

GLASSES

Kitchen Sink
Cleanup

GLASSES

Kitchen Sink
Cleanup

GLASSES

Kitchen Sink
Cleanup

GLASSES

Consistency
Problem
How Many Complete
Sets Are There?

Consistency
Problem
How Many Complete
Sets Are There?

Consistency
Problem
How Many Complete
Sets Are There?

GLASSES

Adding a New
Use Case

GLASSES

Adding a New
Use Case

SAKE SET

GLASSES

BOWLS

Cloud Makes
it Easy to Add
New Databases

Amazon
Redshift

Untangle and
Migrate Existing
“Kitchen Sink”
Schemas

Untangle and
Migrate Existing
“Kitchen Sink”
Schemas

The New De-Normal

Monolithic
Databases

Kitchen Sink
Analogy

De-normalized

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lock-in and the Lifecycle
of Dependencies

Choosing, Using and Losing

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What is the return on
investment (ROI) for
each phase?

Choosing

Using

Losing

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What is the ROI
for each phase?

How has ROI changed
with advances in
technology and
practices?

Choosing

Using

Losing

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Using

Losing

Choosing

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Choosing

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Choosing

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Choosing

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Choosing

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Choosing—What Changed?

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Choosing

Using

Losing

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Using

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Using

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Using - What Changed?

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Choosing

Using

Losing

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Losing

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Losing

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Losing—What Changed?

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Years
Millions of dollars
100s of dev years
Lock-in
Lawyers and contracts

Old World
Monolithic on-prem waterfall lock-in

Weeks
Hundreds of dollars
A few dev weeks
Refactoring
Self service

New World
Agile cloud-native micro-dependencies

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Bottom line
ROI for choosing, using, losing has
changed radically. Stop talking about
lock-in, it’s just refactoring dependencies

The cost of each dependency is far lower
Frequency of refactoring is far higher
Investment and return is much more incremental

Chaos Architecture

A Cloud Native
Availability Model

Four layers
Two teams
An attitude

Chaos
Architecture

No single point
of failure

Infrastructure
and Services

Infrastructure

Data replication
Traffic routing
Avoiding issues
Anti-entropy recovery

Switching and
Interconnecting

Data replication
Traffic routing
Avoiding issues
Anti-entropy recovery

Switching and
Interconnecting

Data replication
Traffic routing
Avoiding issues
Anti-entropy recovery

Switching and
Interconnecting

Infrastructure

Switching

App

!

Error returns
Slow response
Network partition

Application
Failures

Infrastructure

Switching

Application

I wonder why it
did that?
Let’s reboot it.

Whoops!

Now it’s
really hosedUnexpected application

behavior often causes
people to intervene and
make the situation worse

People

A fire drill is a boring
routine where we make
everyone take the
stairs and assemble in
the parking lot

People
Training

!

Fire drills save lives in
the event of a real fire,
because people are
trained how to react

People
Training

Infrastructure

Switching

Application

People

Who runs the
“fire drill” for I.T.?

Infrastructure

Switching

Application

People

Chaos
Engineering

Team

Infrastructure

Switching

Application

People

To
ol

s
Chaos

Engineering
Team

Infrastructure

Switching

Application

People

Chaos
Engineering

Team

Game days

Tools

Simian Army

chaostoolkit.org

ChAP

Gremlin

Infrastructure

Switching

Application

People

To
ol

s
Chaos

Engineering
Team

Security
Red

Team

Infrastructure

Switching

Application

People

ToolsTo
ol

s
Chaos

Engineering
Team

Security
Red

Team

Infrastructure

Switching

Application

People

Chaos
Engineering

Team

To
ol

s
Security

Red
Team

Safestack
AVA

Metasploit

Nmap

AttackIQ

Tools

SafeBreach

Infrastructure

Switching

Application

People

Chaos
Engineering

Team

To
ol

s

Security
Red

Team

ToolsFour layers
Two teams
An attitude—
Break it to make it better

Chaos
Architecture

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Adrian Cockcroft @adrianco
VP Cloud Architecture Strategy

Cloud Trends
Thanks!

