Tales From Inside the Crater

Jesper Louis Andersen
jesper.louis.andersen@gmail.com
ShopGun

October 2, 2017

Motivation

Setup

» Question is "“Does strategy X work in software”

» Typical examples for X: “Microservices”, “Agile”,
“Serverless”, “Static typing”, “Write everything in Haskell”

» Want random samples in our data set, selected uniformly
among projects

Statistical dangers |

» Reality: Survivor bias

Statistical dangers |l

» Selection bias: The selection process of the projects to
study are not random, nor fair.

» Reporting bias: Projects have details which go

under-reported or ignored because it doesn't sell the
cause, or because people didn't think the data important

Main Hypothesis

» Most strategies in software have small effect size

» Most strategies are “phase shifts:” they trade off certain
advantages for other advantages

100% success rate implies
data tampering

System design

v

Everything in this talk are things I've experienced

v

Fools your intuition
» ...or was told by people | trust

» A certain amount of osmosis is expected

Microservices

Definition

One possible definition:
» The system is split into modular processes
» Processes are isolated (software, VM, hardware)
» Processes communicate by message passing
» Communication is not reliable

Goal: emergent behavior among processes!

Erlang |

One possible definition:
» The system is split into modular processes
» Processes are isolated (software, VM, hardware)
» Processes communicate by message passing
» Communication is not reliable

Goal: emergent behavior among processes!

Erlang Il

» Erlang systems have a 30 year head start on microservices

» Most of the ideas from the Reactive manifesto also
overlaps

» Microservices are independently invented at many
companies around 2013

» “Microservices” term from 2014 (Google Trends)

Does your microservice
use 1/1.000.000 of your
machine capacity?

Distributed

» A system based on microservices is a distributed system

» Distributed systems trade complexity for either greater
resilience or greater efficiency (redundancy / sharding)

» There are many more failure modes in a distributed
system

» Of 1000 nodes, at least 5 are down at any pointin time

» Consistency (Serializability / Linearizability, ACID) is often
extremely hard to achieve

» Most dist-sys get consistency wrong (see e.g., Kyle
Kingsbury: Jepsen)
» Maintenance is often way harder (immaturity, scale, ...)

Epistemic Logic
corresponds to distributed
systems

» In propositional logic facts are globally true

v

Epistemic logic has Agents

v

Agents knows facts
“I know that Dan knows if it will rain”

v

v

Correspondance: services with state (facts)

Sharing facts is harder in epistemic logic

Key observation:

Distributed systems

Epistemic logic requires
radically different methods

You earn $25 per hour,
24/7. Your monolith
(vertical) scalability?

Economic wall

» Amazon AWS X1E system: $26 per hour (on demand)
» 4 Terabytes of memory

» 128 CPU cores

» 25 gigabit internet

> l.e., a vast majority of companies will scale on a single
machine instance just fine

» Trend: this is getting easier over time. Machines are
getting more capacity

» Run your payments on the monolith: easy consistency

Capacity « Earnings

Protocols

» In a message passing system, the protocol reign supreme

v

What happens inside the service is not interesting

v

What its protocol looks like matter

v

Replacing a service is modular, loosely coupled

v

Replacing a protocol is not

Often hard to definel!

Protocol design learned the hard way

» Make a global protocol for the company up front

» Local payload inside this protocol

» Haphazard introduction of microservices means
microprotocols

» TTL in messages (delivery count, milliseconds) (avoids
poison scenarios)

» Deduct queue sojourn and forwarding time as well
» Jobs which cannot finish in time are thrown out

» Keep 2 bits: (user-facing bit, important bit). Prioritization
under overload (Google SRE handbook)

» Unique request-Ids on everything for tracing

Protocol design learned the hard way |l

v

JSON has no Type-Zoo and is a lowest common
denominator

v

JSON requires a parser to look at every byte (i.e., slow)
HTTP forces your hand into REST very often
HTTP/2 is required for out-of-order processing

v

v

v

It is not clear REST is a good fit for microservices
» Communication is a large part of the program

RPC is dangerous

RPC

v

RPC forces a certain pattern in software

v

Synchronous behavior slows down work

v

Message flow is limited (often no cycles!)

v

Tight coupling (monolith-of-microservices)
James E. White in RFC 707, 708 (1976!)

» Asynchronous

» Binary protocol

» Bidirectional messaging
>

>

v

HTTP/2 only solves this halfway (see: PUSH)
Plan9’s 9p protocol does it way better

RPC I

» Example: gRPC
» No mention in early doc of: fault, error, exception, throw,
raise, ...
» Both TCP, HTTP/2 and gRPC implements flow control, yet
build on each other in a stack
» Flow-control is likely to fight, making performance bad

RPC in monoliths are
function calls

ldempotent Ratchets

» Requests are obligations which can be restated

» Requests are idempotent and can be retried any number
of times

» If we succeed, the ratchet turns one step and persists the
new state safely.

» We can always restart from a safe ratchet state.

» Observation: Most stable systems I've built includes an
idempotent ratchet somewhere.

Conway's law
Organization =~ System

Serverless

A Misnomer

» The true serverless architectures are peer-to-peer systems
» The clientis also the server in P2P

» Examples: BitTorrent, Distributed Hash Tables (some
Blockchains)

» What people call serverless really means “other people’s
servers”

» Alternative name: outsourcing

Other people’s servers

v

You don't control the reliability of the service
» The product can also become obsolete

v

You don't control the quality of the service

» Companies will min-max this: lousiest service which still
keeps you as a paying customer

v

If you don’t run metrics on their service, you don't know
their service level

The client becomes fat

v

v

Major reason for adoption: cost cutting, pay-as-you-go
You cannot outsource:

» Your core
» Your reliability (your users point toward you anyway)

v

APls & Hosted Functions

APls

The new way to lock down customers:

» Do notimplement an open protocol, force them to use
your API

v

Make the price for switches as expensive and time
consuming as possible

v

Even better, embed a large chunk of your own code in
their system with an SDK

v

Own their database, and force them to manage state
between you and them

v

Make their apps call to several different services, so they
don't have a common factoring point

Hosted Functions

v

v

v

Can produce massive cost cuts in organizations

Reinvention of the PHP execution model: one apache
process per incoming request

Long-running jumps requires calling another hosted
function in a recursive continuation pattern
Stateless:

>

>

Easy to get correct

Inherently slow because every processing requires data
loads

Solved with “caching” which means you keep the state in
the cache

The cache is often outside the process, which implies
latency

Better solved with lots of small stateful processes in most
cases

Questions?
(Also happy to talk about: GraphQL, QuickCheck, Formal
Methods, Type systems, Functional Programming,
Concurrency models, ...find me afterwards)

Overflow slides

Reactive Manifesto

Responsive

» Systems must cope with overload situations by dropping
work

v

Low latency by cheating: running really really fast
» Cooperative multithreading is dangerous

v

Sensitive system: small fluctuations topples the system
easily

Resilient

» Robustness: system survives unknown data

» Resilience: system gracefully degrades when failures
happen

» Resilience is far harder than robustness (order of
magnitude)

» Must cope with systems being unavailable

» Holistic behavior: cannotignore client

Elastic

v

Many systems won't need this!

v

1.5 kilobyte per customer, 1.000.000 customers
» = around 1.5 Gigabyte of memory

v

AWS m3.medium instance: 3.5 gigabyte of memory

v

Large OLTP databases fitin memory on modern
machines (e.g., VoltDB)

v

If it is in memory, miserable algorithms are fast

Message Driven

From experience:

» Common setup: processing stations with queues in
between

» Means processing station temporarily impersonates
message

» Internal vs External queues
Dualize!
» The message is a process (you'll get millions of them :)
» The message calls other subsystems
» Queuing happens in the system boundary
» Shaping happens in the system boundary

Serverless in Erlang

F = fun() -> some_expensive_closure end,
Initiator = self(),

Uniq = make_ref(),

Pid = spawn_link(fun() ->

Res = FQ),
Initiator ! {result, Uniq, Res}
end),

MRef = monitor(process, Pid),
receive
{reply, Uniq, Res} —>
demonitor (MRef, [flush]),
{'DOWN', MRef, process, _, Failure} ->

after Timeout ->

end

