
Tales From Inside the Crater

Jesper Louis Andersen
jesper.louis.andersen@gmail.com

ShopGun

October 2, 2017

Motivation

Setup

▶ Question is “Does strategy X work in software”

▶ Typical examples for X: “Microservices”, “Agile”,
“Serverless”, “Static typing”, “Write everything in Haskell”

▶ Want random samples in our data set, selected uniformly
among projects

Statistical dangers I

▶ Reality: Survivor bias

Statistical dangers II

▶ Selection bias: The selection process of the projects to
study are not random, nor fair.

▶ Reporting bias: Projects have details which go
under-reported or ignored because it doesn’t sell the
cause, or because people didn’t think the data important

Main Hypothesis

▶ Most strategies in software have small effect size

▶ Most strategies are “phase shifts:” they trade off certain
advantages for other advantages

100% success rate implies
data tampering

System design

▶ Everything in this talk are things I’ve experienced

▶ Fools your intuition

▶ …or was told by people I trust

▶ A certain amount of osmosis is expected

Microservices

Definition

One possible definition:

▶ The system is split into modular processes

▶ Processes are isolated (software, VM, hardware)

▶ Processes communicate bymessage passing

▶ Communication is not reliable

Goal: emergent behavior among processes!

Erlang I

One possible definition:

▶ The system is split into modular processes

▶ Processes are isolated (software, VM, hardware)

▶ Processes communicate bymessage passing

▶ Communication is not reliable

Goal: emergent behavior among processes!

Erlang II

▶ Erlang systems have a 30 year head start on microservices

▶ Most of the ideas from the Reactive manifesto also
overlaps

▶ Microservices are independently invented at many
companies around 2013

▶ “Microservices” term from 2014 (Google Trends)

Does your microservice
use 1/1.000.000 of your
machine capacity?

Distributed

▶ A system based on microservices is a distributed system

▶ Distributed systems trade complexity for either greater
resilience or greater efficiency (redundancy / sharding)

▶ There are many more failure modes in a distributed
system

▶ Of 1000 nodes, at least 5 are down at any point in time

▶ Consistency (Serializability / Linearizability, ACID) is often
extremely hard to achieve

▶ Most dist-sys get consistency wrong (see e.g., Kyle
Kingsbury: Jepsen)

▶ Maintenance is often way harder (immaturity, scale, …)

Epistemic Logic
corresponds to distributed

systems

▶ In propositional logic facts are globally true

▶ Epistemic logic has Agents

▶ Agents knows facts

▶ “I know that Dan knows if it will rain”

▶ Correspondance: services with state (facts)

Sharing facts is harder in epistemic logic

Key observation:
Distributed systems

Epistemic logic requires
radically different methods

You earn $25 per hour,
24/7. Your monolith
(vertical) scalability?

Economic wall

▶ Amazon AWS X1E system: $26 per hour (on demand)

▶ 4 Terabytes of memory

▶ 128 CPU cores

▶ 25 gigabit internet

▶ I.e., a vast majority of companies will scale on a single
machine instance just fine

▶ Trend: this is getting easier over time. Machines are
getting more capacity

▶ Run your payments on the monolith: easy consistency

Capacity ∝ Earnings

Protocols

▶ In a message passing system, the protocol reign supreme

▶ What happens inside the service is not interesting

▶ What its protocol looks like matter

▶ Replacing a service is modular, loosely coupled

▶ Replacing a protocol is not

Often hard to define!

Protocol design learned the hard way

▶ Make a global protocol for the company up front

▶ Local payload inside this protocol

▶ Haphazard introduction of microservices means
microprotocols

▶ TTL in messages (delivery count, milliseconds) (avoids
poison scenarios)

▶ Deduct queue sojourn and forwarding time as well
▶ Jobs which cannot finish in time are thrown out

▶ Keep 2 bits: (user-facing bit, important bit). Prioritization
under overload (Google SRE handbook)

▶ Unique request-Ids on everything for tracing

Protocol design learned the hard way II

▶ JSON has no Type-Zoo and is a lowest common
denominator

▶ JSON requires a parser to look at every byte (i.e., slow)

▶ HTTP forces your hand into REST very often

▶ HTTP/2 is required for out-of-order processing

▶ It is not clear REST is a good fit for microservices

▶ Communication is a large part of the program

RPC is dangerous

RPC

▶ RPC forces a certain pattern in software

▶ Synchronous behavior slows down work

▶ Message flow is limited (often no cycles!)

▶ Tight coupling (monolith-of-microservices)

▶ James E. White in RFC 707, 708 (1976!)
▶ Asynchronous
▶ Binary protocol
▶ Bidirectional messaging
▶ HTTP/2 only solves this halfway (see: PUSH)
▶ Plan9’s 9p protocol does it way better

RPC II

▶ Example: gRPC
▶ No mention in early doc of: fault, error, exception, throw,
raise, …

▶ Both TCP, HTTP/2 and gRPC implements flow control, yet
build on each other in a stack

▶ Flow-control is likely to fight, making performance bad

RPC in monoliths are
function calls

Idempotent Ratchets

▶ Requests are obligations which can be restated

▶ Requests are idempotent and can be retried any number
of times

▶ If we succeed, the ratchet turns one step and persists the
new state safely.

▶ We can always restart from a safe ratchet state.

▶ Observation: Most stable systems I’ve built includes an
idempotent ratchet somewhere.

Conway’s law
Organization ≃ System

Serverless

AMisnomer

▶ The true serverless architectures are peer-to-peer systems

▶ The client is also the server in P2P

▶ Examples: BitTorrent, Distributed Hash Tables (some
Blockchains)

▶ What people call serverless really means “other people’s
servers”

▶ Alternative name: outsourcing

Other people’s servers

▶ You don’t control the reliability of the service
▶ The product can also become obsolete

▶ You don’t control the quality of the service
▶ Companies will min-max this: lousiest service which still
keeps you as a paying customer

▶ If you don’t run metrics on their service, you don’t know
their service level

▶ The client becomes fat

▶ Major reason for adoption: cost cutting, pay-as-you-go

▶ You cannot outsource:
▶ Your core
▶ Your reliability (your users point toward you anyway)

APIs & Hosted Functions

APIs

The new way to lock down customers:

▶ Do not implement an open protocol, force them to use
your API

▶ Make the price for switches as expensive and time
consuming as possible

▶ Even better, embed a large chunk of your own code in
their system with an SDK

▶ Own their database, and force them to manage state
between you and them

▶ Make their apps call to several different services, so they
don’t have a common factoring point

Hosted Functions

▶ Can producemassive cost cuts in organizations

▶ Reinvention of the PHP execution model: one apache
process per incoming request

▶ Long-running jumps requires calling another hosted
function in a recursive continuation pattern

▶ Stateless:
▶ Easy to get correct
▶ Inherently slow because every processing requires data
loads

▶ Solved with “caching” which means you keep the state in
the cache

▶ The cache is often outside the process, which implies
latency

▶ Better solved with lots of small stateful processes in most
cases

Questions?
(Also happy to talk about: GraphQL, QuickCheck, Formal

Methods, Type systems, Functional Programming,
Concurrency models, …find me afterwards)

Overflow slides

Reactive Manifesto

Responsive

▶ Systems must cope with overload situations by dropping
work

▶ Low latency by cheating: running really really fast

▶ Cooperative multithreading is dangerous

▶ Sensitive system: small fluctuations topples the system
easily

Resilient

▶ Robustness: system survives unknown data

▶ Resilience: system gracefully degrades when failures
happen

▶ Resilience is far harder than robustness (order of
magnitude)

▶ Must cope with systems being unavailable

▶ Holistic behavior: cannot ignore client

Elastic

▶ Many systems won’t need this!

▶ 1.5 kilobyte per customer, 1.000.000 customers

▶ ⟹ around 1.5 Gigabyte of memory

▶ AWS m3.medium instance: 3.5 gigabyte of memory

▶ Large OLTP databases fit in memory on modern
machines (e.g., VoltDB)

▶ If it is in memory, miserable algorithms are fast

Message Driven

From experience:

▶ Common setup: processing stations with queues in
between

▶ Means processing station temporarily impersonates
message

▶ Internal vs External queues

Dualize!

▶ Themessage is a process (you’ll get millions of them :)

▶ Themessage calls other subsystems

▶ Queuing happens in the system boundary

▶ Shaping happens in the system boundary

Serverless in Erlang

F = fun() -> some_expensive_closure end,
Initiator = self(),
Uniq = make_ref(),
Pid = spawn_link(fun() ->

Res = F(),
Initiator ! {result, Uniq, Res}

end),
MRef = monitor(process, Pid),
...
receive

{reply, Uniq, Res} ->
demonitor(MRef, [flush]),
...;

{'DOWN', MRef, process, _, Failure} ->
...

after Timeout ->
...

end

