From Your Keyboard to Your
Customers without a Server to

Manage In-between

Chris Munns — Senior Developer Advocate - Serverless

About me:

Chris Munns - munns@amazon.com, @chrismunns
« Senior Developer Advocate - Serverless
 New Yorker
* Previously:

 AWS Business Development Manager — DevOps, July ’15 - Feb 17
 AWS Solutions Architect Nov, 2011- Dec 2014

* Formerly on operations teams @Etsy and @Meetup
« Little time at a hedge fund, Xerox and a few other startups

Rochester Institute of Technology: Applied Networking and
Systems Administration ‘05

Internet infrastructure geek

T 3:“»;*‘\‘._ ~
, '-‘-"-u\-‘ﬁ"%.;
o

. > % S
p‘aﬂ*&;‘:-, y
(M s S

_—
o - —~——
o A e A /_/0 '1.:\:.’
o et .."_5.) ’

A - A+
s DO Y
- v ‘_“\.-,l

ot
¥/
\,

l..‘
"
A

= S

Serverless means...

</>

No servers to provision
or manage

Never pay for idle

Scales with usage

Availability and fault
tolerance built in

Serverless application

EVENT SOURCE FUNCTION SERVICES (ANYTHING)

Changesin
data state

Requests to
endpoints

Changesin
resource state

Common Lambda use cases

y
10 Of

| |

o
>

Web

Applications

Static
websites

Complex web
apps
Packages for

Flask and
Express

Backends

Apps &
services

Mobile
loT

Data
Processing

Real time
MapReduce
Batch

Chatbots

Powering
chatbot logic

Amazon
Alexa

Powering
voice-enabled

apps

Alexa Skills
Kit

IT
Automation

Policy engines

Extending
AWS services

Infrastructure
management

aWs
N

USSY
-l

N

: https’f//’secure.ﬂickr.corh/photos/stevendepold/57491 92025/

Frameworks

ClaudiaJS

Node.js framework for deploying projects
to AWS Lambda and Amazon API
Gateway

Has sub projects for microservices,
chat bots and APIs

Simplified deployment with a single
command

Use standard NPM packages, no need
to learn swagger

Manage multiple versions

&

app.js:

var ApiBuilder = require(
)

var api = new ApiBuilder();

= api;

api.get(, function () {

1;

$ claudia create --region us-east-1 --api-module app

Chalice adWs
N

Chalice
Python serverless “microframework” for app.py:

AWS Lambda and Amazon AP| Gateway

A command line tool for creating, chalice Chalice
deploying, and managing your app
A familiar and easy to use API for
declaring views in python code

Automatic Amazon |IAM policy
generation

app = Chalice(app_name="helloworld")

@app.route("/")
def index():

{"hello": "world"}

$chalice deploy

Chalice — a bit deeper dWS
from chalice import cChalice V‘j

from chalice import BadrRequestError Chalice

app = Chalice(app_name="apiworld-hot')

FOOD_STOCK = {
'hamburger': 'yes’,
'hotdog': 'no'

@app.route('/")
def index(Q:
return {'hello': 'world'}

@app.route('/Tlist_foods')
def Tist_foods():
return FOOD_STOCK.keys ()

@app.route('/check_stock/{food}")
def check_stock (food):
try:
return {'in_stock': FOOD_STOCK[food]}
except KeyError:
raise BadRequestError("Unknown food '%s', valid choices are: %s" % (food, ', '.join(FOOD_STOCK.keys())))

@app.route('/add_food/{food}', methods=["'PUT'])
def add_food(food):
return {"value": food}

Chalice — a bit deeper

from chalice import cChalice
from chalice import BadrRequestError

app = Chalice(app_name="apiworld-hot')
FOOD_STOCK = {

"hamburger'
'hotdog': 'no

'yes’,

}

@app.route('/")
def index(Q:
return {'hello': 'world'
@app.route('/Tlist_foods')
def Tist_foods():
return FOOD_STOCK.keys ()

@app.route('/check_stock/{food}"'
def check_stock(food):
try:
returp in_stocky” FOOD_STOCK[food]}
except KeyError:

raise BadRequestErpfr("Unknown food '%s'

alid choices are: %s" % (food,

@app.route('/add_food/{food}', methods=["'PUT'])
def add_food(food):
return {"value": food}

dWsS
\../7

application routes

error handling

http method support

, '.join(FOOD_STOCK. keys())))

AWS Serverless Application Model (SAM)

CloudFormation extension optimized for
serverless

New serverless resource types: functions, APIs,
and tables

Supports anything CloudFormation supports

Open specification (Apache 2.0)

https://github.com/awslabs/serverless-application-model

SAM template

AwSTemplateFormatversion: '2010-09-09’
Transform: AwWS::Serverless-2016-10-31
Resources:
GetHtml Function:
Type: AWS::Serverless::Function
Properties:
CodeuUri: s3://sam-demo-bucket/todo_list.zip
Handler: index.gethtml
Runtime: nodejs4.3
Policies: AmazonDynamoDBReadOnlyAccess
Events:
GetHtml :
Type: Api
Properties:
path: /{proxy+}
Method: ANY

ListTable:
Type: AWS::Serverless::SimpleTable

SAM template

AwSTemplateFormatversion: '2010-09-09’ Tells CloudFormation this is a SAM

Transform: AWS::Serverless-2016-10-31 template it needs to “transform”
7~ Resources:

GetHtml Function:
Type: AWS::Serverless::Function

Properties: : :
CodeuUri: s3://sam-demo-bucket/todo_list.zip Creates a Lambda function with the

Handler: index.gethtm] referenced managed |IAM policy, |

Runtime: nodejs4.3 runtime, code at the referenced zip

Policies: AmazonDynamoDBReadonlyAccess location, and handler as defined.

Events: Also creates an APl Gateway and
GetHtm]: takes care of all

Type: Api mapping/permissions necessary
Properties:
path: /{proxy+}

Method: ANY

ListTable: Creates a DynamoDB table with 5
Type: AWS::Serverless::SimpleTable Read & Write units

SAM template

26 lines (25 sloc) 827 Bytes

Transform: 'AWS::Serverless-2016-10-31'
Parameters:
SamMultipler:

Raw Blame History [J o (M

Description: "SAM multiplier. Make this really big to have a party :)"

Type: "String"
OriginUrl:

Description: "The origin url to allow CORS requests from. This will be the base URL of your static SAM website."

Type: "String"
Resources:
GetSAMPartyCount:

Type: AWS::Serverless::Function

Properties:
Handler: index.handler
Runtime: nodejs4.3
CodeUri: ./
Environment:

Variables:

SAM_MULTIPLIER: !Ref SamMultipler
ORIGIN_URL: !Ref OriginUrl

Events:
GetResource:
Type: Api
Properties:
Path: /sam
Method: get

\

Serverles...

> <-THIS

“_

e’ &

BECOMES THIS->

ﬁ.

GetSAMPar...
Permission

gusssssssmsmsnnnnn®

-
N
.

From: https://github.com/awslabs/aws-serverless-samfarm/blob/master/api/saml.yaml|

GetSAMPar... Serverles...
Role . Deployment
o
\» 0
P
GetSAMPar... Serverles...
Function Stage

ﬁ.

GetSAMPar...
Permission

|

Introducing SAM Local

CLI tool for local testing of serverless apps

Works with Lambda functions and “proxy-
style” APls

Response object and function logs available
on your local machine

Currently supports Java, Node.js and
Python

https://github.com/awslabs/aws-sam-local

Lambda execution model

Synchronous (push) Asynchronous (event)

t . Amazon I
t API Gateway SNS

AWS Lambda AWS Lambda
function function

Stream-based

P

n
>

[Io

Amazon
DynamoDB

Amazon
Kinesis

changes

AWS Lambda
service

. function

Event sources that trigger AWS Lambda

DATA STORES

$

Amazon S3 Amazon Amazon Amazon
DynamoDB Kinesis Cognito

DEVELOPMENT AND MANAGEMENT TOOLS

L - N L S

AWS AWS CloudTrail AWS Amazon
CloudFormation CodeCommit CloudWatch

... and more!

ENDPOINTS

S

Amazon AWS loT AWSStep Amazon
API Gateway Functions Alexa

EVENT/MESSAGE SERVICES

Amazon SNS Cron events

Amazon API Gateway

f

Mobile Apps

Websites

Y

Services

Internet

1|

AWS Step
Functions

Amazon |

CloudFront

Amazon

CloudWatch
\ Monitoring

T

AWS Lambda
functions

—ipF

Endpoints on
Amazon EC2

NN
| ‘-amazon

II webservices

Any other
AWS service

/

All publicly
accessible

endpoints

aWs
N

Amazon API Gateway

J/
o

Create a unified DDoS protection
API frontend for and throttling for
multiple micro- your backend

services

Authenticate and Throttle, meter,
authorize and monetize API
requests to a usage by 3
backend party developers

AWS Step Functions

“Serverless” workflow management with
zero administration

 Makes it easy to coordinate the

components of distributed applications Task.,, —

and microservices using visual workflows StorelmageMetadats NotSupportedimageType
“Failure capture

Choice

« Automatically triggers and tracks each
step, and retries when there are errors, AN

SO your application executes in order and i Parallel Tasks
as expected ;

Logs the state of each step, so when
things do go wrong, you can diagnose
and debug problems quickly

Computer power

> Memory > Cores

\ g « %

Lambda exposes only a memory control, this also affects
the % of CPU core allocated to a function

Is your code CPU, Network or memory-bound, it could be
cheaper to give more memory

Less memory Is not always cheaper

Stats for Lambda function that calculates 1000 times all
prime numbers <= 1000000

128mb $0.024628
256mb 6.678945secC

512mb 3.194954sec $0.026830
1024mb 1.465984sec $0.024638

Lambda function runtimes

Separate business logic from function signature

Choose dependencies/frameworks carefully

Interpret languages initialize much quicker but not
necessarily faster overall

Separate business logic from function
sighature

app = Todo()

def lambda_handler(event, context):
ret = app.dispatch(event)

return {
'statusCode': ret["status _code"],
'headers': ret["headers"],
'body ' : json.dumps(ret["body"])

Leverage container reuse

 Lazily load variables in the global scope — functions stay
warm for several minutes

Don’t load it if you don’t need it — cold starts are affected

S3
db

boto3.resource('s3"')
db.connect()

def lambda_handler(event, context):
global db

1f not db:
db = db.connect()

Cold start: Understand the function lifecycle

Download
your code

Cold start: Understand the function lifecycle

Download Start new
your code container

Cold start: Understand the function lifecycle

Download Start new Bootstrap
your code container the runtime

Cold start: Understand the function lifecycle

Download Start new Bootstrap Start your
your code container the runtime code

Cold start: Understand the function lifecycle

Download Start new Bootstrap Start your
your code container the runtime code

Full | Partial | | Warm

cold start

cold start start

AWS optimization ' Your optimization

Cold start: Understand the function lifecycle
(VPC)

Download Start new Create Attach Bootstrap Start your
your code container VPC ENI VPC ENI runtime code

Full Partial Warm
cold start cold start start

AWS optimization ' Your optimization
aWws

\/‘7

LELGEWTEVE

Cold starts look bad during development, not
frequent in prod

More memory is not always more expensive

Don’'t over-optimize your code, just use the global
scope wisely

https://secure.flickr.com/photos/jasoneppink/499531891

Metrics and logging are a universal right!

CloudWatch Metrics:

6 Built in metrics for Lambda

Invocation Count, Invocation duration, Invocation
errors, Throttled Invocation, Iterator Age, DLQ Errors

Can call “put-metric-data” from your function code
for custom metrics

7 Built in metrics for API-Gateway v

API Calls Count, Latency, 4XXs, 5XXs, Integration
Latency, Cache Hit Count, Cache Miss Count

Error and Cache metrics now support averages and
percentiles

Metrics and logging are a universal right!

CloudWatch Logs:

APl Gateway Logging
. 2 Levels of logging, ERROR and INFO
. Optionally log method request/body content
. Set globally in stage, or override per method
Lambda Logging

. Logging directly from your code with your language’s equivalent
of console.log()

. Basic request information included
Log Pivots

. Build metrics based on log filters

. Jump to logs that generated metrics
Export logs to AWS ElastiCache or S3

. Explore with Kibana or Athena/QuickSight

AWS X-Ray

TRACE REQUESTS RECORD TRACES

ll ||]”|h

f r 0010,
1""%111‘11
. . ”]]lllllll‘

...

|1'
— 10

11011 ¢

AWS X-Ray traces requests X-Ray collects data about the request X-Ray combines the data
made to your application. from each of the underlying applications gathered from each service into
services it passes through. singular units called traces.

VIEW SERVICE MAP

View the service map to see trace
data such as latencies, HTTP statuses,
and metadata for each service.

ANALYZE ISSUES

|860tracesm|n ‘
.‘. avg 0.15ms |

index DynamoDB

Drill into the service showing
unusual behavior to identify
the root issue.

Application instrumentation (Node.|s)

var AWSXRay = require('aws-xray-sdk-core');
var AWS = AWSXRay.captureAWS(require('aws-sdk'));
s3 = new AWS.S3({signatureVersion: 'v4'});
exports.handler = (event, context, callback) => {

var params = {Bucket: 'tim-example-bucket', Key: 'MyKey', Body: 'Hello!'};

s3.putObject(params, function(err, data) {});
};

Service map

Clients

avg. 1.56s
0.2 /min

s3example
AWS::Lambda

s3example
AWS::Lambda::Function

avg. 580ms
0.2 t/min

Map legend €@

Method Response Duration
- 202 1.6 sec

Name Res. Duration

¥ s3example AWS:Lambda
s3example
Dwell Time
Attempt #1
¥ s3example AWS::Lambda::Function

s3example
Initialization

S3

Age

18.1 sec (2017-04-14 00:39:13 UTC)

Status

0.0ms
I

ID
1-58f01a31-24551f535d0ed5f5a70bdbf2

600ms
1

b bbs://securg.ﬂickr.com/photos/sﬁehceyc/7481 166880

AWS CodeBuild

Fully managed build service that compiles source code,
runs tests, and produces software packages

Scales continuously and processes multiple builds
concurrently

You can provide custom build environments suited to
your needs via Docker images

Only pay by the minute for the compute resources you
use

Can be used as a “Test” action in CodePipeline

Launched with CodePipeline and Jenkins integration

buildspec.yml

version: 0.1

environment_variables:
plaintext:
"INPUT_FILE": "saml.yaml”
"S3_BUCKET": ""

phases:
install:
commands:

- npm install
pre_build:

commands:

- eslint *.js
build:

commands:

- npm test
post build:

commands:

- aws cloudformation package --template $INPUT_FILE --s3-
bucket $S3 BUCKET --output-template post-saml.yaml
artifacts:

type: zip

files:
- post-saml.yaml
- beta.json

bundspec yml Example

version:

environment_variables: Variables to be used by phases of
plaintext:

"INPUT FILE": "saml.yaml” build
"S3_BUCKET": "™
Examples for what you can do in

phases:

install: the phases of a build:
commands: You can install packages or run
commands to prepare your

- npm install
pre build: _ e ;
commands : environment in "install”.

- eslint *.js Run syntax checking,
commands in “pre_build”.
Corf'mi;:]s;est Execute your build
post_build: tool/command in “build”

commands: Test your app further or ship a

- aws cloudformation package --template $INPUT_FILE --s3- container image to a repository
bucket $S3 BUCKET --output-template post-saml.yaml . t build
artifacts: In post_bul

t : zi . .
e, " « Create and store an artifact in S3

- post-saml.yaml
- beta.json

build:

AWS CodePipeline

Continuous delivery service for fast and
reliable application updates

Model and visualize your software release
process

Builds, tests, and deploys your code every time
there is a code change

Integrates with third-party tools and AWS

Delivery via CodePipeline

Beta

Pipeline flow:
Commit your code to a source code repository o @
Package/Testin CodeBuild O Suooeeded s deys a0

Use CloudFormation actions in CodePipeline to eoseChangesel @
create or update stacks via SAM templates AWS CloudFormation
Optional: Make use of ChangeSets © Succeeded 5 days ago

Make use of specific stage/environment
. . . IntegrationTests
parameter files to pass in Lambda variables [earetontes

Test our application between stages/environments Il stk
Optional: Make use of Manual Approvals

CodeCommitRepo: Increa...

An example minimal Developer’s pipeline:
MyApplication

MyBranch-Source

Source

This pipeline:

 Three Stages

* Builds code artifact

test-buid-source * One Development environment
 Uses SAM/CloudFormation to

deploy artifact and other AWS
resources
Has Lambda custom actions for
running my own testing functions

MyDev-Deploy

create-changeset
(1]

execute-changeset

Run-stubs

Start with AWS CodeStar

ﬁ Services v Resource Groups v b - - 3 3 5 . [\® cChrisMunns v Oregon~ Support v
J O~
o<
I\o))

AWS CodeStar

AWS CodesStar lets you quickly develop, build and deploy applications on AWS.

Start a project

o@0

Create new applications Work across your team securely Manage software delivery easily

Best

Practices

aWs
N

Lambda based “monoliths”

EVENT DRIVEN ONE LARGE LAMBDAFUNCTION

GET /pw—
PUT /pets

0L0LDL
100110

PUT /describe/pet/$id 001110

Lambda based “monoliths”

~AMBDAFUNCTION

GET /pw—
PUT /pets

DL0LOL\ .
T S
oo111y

GET /describe/pet/$id I

i
01LD"
iy

PUT /describe/pet/$id

Lambda based “nano-services”

EVENT DRIVEN ONE LAMBDAPERHTTP METHOD

01010L

GET/Pw— L0DL1LD
PUT /pets 001110

01010L
100110

PUT /describe/pet/$id 001110

SAM Best Practices

* Unless function handlers share code, split them into their
own independent Lambda functions files or binaries

Another option is to use language specific packages to share
common code between functions /

Unless independent Lambda functions share event

sources, split them into their own code repositories with /
their own SAM templates

Locally validate your YAML or JSON SAM files before
committing them. Then do it again in your CI/CD process

Lambda Environment Variables

Key-value pairs that you can dynamically pass to
your function

Avalilable via standard environment variable APls
such as process.env for Node.js or os.environ for
Python
Can optionally be encrypted via AWS Key
Management Service (KMS)

* Allows you to specify in IAM what roles have access to

the keys to decrypt the information

Useful for creating environments per stage (i.e. dev,
testing, production)

APl Gateway Stage Variables

Stage variables act like environment variables
Use stage variables to store configuration values
Stage variables are available in the $context object t

Values are accessible from most fields in APl Gateway

» Lambda function ARN t
« HTTP endpoint

e Custom authorizer function name

« Parameter mappings

Lambda and APl Gateway Variables + SAM

Parameters:
MyEnvironment:

Type: String
Default: testing
Allowedvalues:

- testing

- staging

- prod

Description: Environment of this stack of
resources

SpecialFeaturel:
Type: String
Default: false
Allowedvalues:
- true
- false
Description: Enable new SpecialFeaturel

#Lambda

MyFunction:
Type: 'AwS::Serverless::Function'
Properties:

Environment:
variables:
ENVIRONMENT: !Ref: MyEnvironment
Spec_Featurel: !Ref: SpecialFeaturel

#API Gateway
MyApiGatewayApi :
Type: AWS::Serverless: :Api
Properties:

variables:
ENVIRONMENT: !Ref: MyEnvironment
SPEC_Featurel: !Ref: SpecialFeaturel

AWS Systems Manager — Parameter Store

Centralized store to manage your
configuration data

e supports hierarchies
plain-text or encrypted with KMS

Can send notifications of changes
to Amazon SNS/ AWS Lambda

Can be secured with IAM
Calls recorded in CloudTrail
Can be tagged

Available via API/SDK

Useful for: centralized environment
variables, secrets control, feature
flags

from __future__ import print_function
import json
import boto3
ssm = boto3.client('ssm', 'us-east-1')

def get_parameters():
response = ssm.get_parameters(

Names=['LambdaSecureString'] ,withbDe
cryption=True

)

for parameter 1in
response['Parameters’']:

return parameter['value']

def Tambda_handler(event, context):
value = get_parameters()
print("valuel =" + value)

return value # Echo back the first key
value

SAM Best Practices

Create multiple environments from one template: Source

« Use Parameters and Mappings when possible to Control
build dynamic templates based on user inputs and
pseudo parameters such as AWS::Region

- Dev
Use ExportValue & ImportValue to share resource
information across stacks - Test

- Prod
Build out multiple environments, such as for
Development, Test, Production and even DR using SAM Template
the same template, even across accounts

Local development should lead to a formal pipeline!

MyApplication Deploy Staging This COdepl pel | ne

1]
pipeline:
([]

A

Builds code artifact w/ CodeBuild
Three deployed to “Environments”
Uses SAM/CloudFormation to
deploy artifact and other AWS
resources

Has Lambda custom actions for
running my own testing functions
Integrates with a 3 party
tool/service

Has a manual approval before
deploying to production

Run-API-test

QA-Sign-off o

Review

Deploy Testing

create-changeset
o
Deploy Prod
execute-changeset create-changeset
1] 1]

execute-changeset

Post-Deploy-Slack o

.Sounds easy!

Serverless application

EVENT SOURCE FUNCTION SERVICES (ANYTHING)

Changesin
data state

Requests to
endpoints

Changesin
resource state

aws.amazon.com/serverless
Products ~ Solutions Pricing Software Support Customers More ~ English ~ My Account ~ Sign In to the Console

Serverless Computing and Applications

Build and run applications without thinking about servers

Get Started

AWS Lambda Getting Started Resources Use Cases Developer Tools Partner Solutions Compute Blog

Build Serverless Applications for Production

Serverless computing allows you to build and run applications and services without thinking about servers. Serverless applications don't require you to
provision, scale, and manage any servers. You can build them for virtually any type of application or backend service, and everything required to run and
scale your application with high availability is handled for you.

Building serverless applications means that your developers can focus on their core product instead of worrying about managing and operating servers
or runtimes, either in the cloud or on-premises. This reduced overhead lets developers reclaim time and energy that can be spent on developing great

aws.amazon.com/serverless/developer-tools

L LT
waramazon Products v Solutions Pricing Resources More ~ English ~ My Account ~ Sign In to the Console
webservices

Serverless Application Developer Tooling

Tools for serverless application and AWS Lambda developers

Get Started

Frameworks Monitoring & Performance Local Testing and IDEs Partner Solutions Serverless Computing

AWS and its partner ecosystem provide tools and services which help you develop serverless applications on AWS Lambda and other AWS services.
These frameworks, deployment tools, SDKs, IDE plugins, and monitoring solutions help you rapidly build, test, deploy, and monitor serverless
applications. Below is a selection of tools that you can use for your serverless application development cycle.

DANYE MERCI THANK YOU GRAC
DANKE MERCI THANK YOU GRAC
DANKE MERCI THANK YOU GRAG
DANKE MERCI THANK YOU GRAC

-- A" J —‘ \ ‘,

AS ARIUATC
AS ARIGATC
AS ARIGATC
AS ARIGATC

DANKE MERCI THANK YOU GRACIAS ARIGATC
DANKE MERCI THANK YOU GRACIAS ARIGATC

Chrls Munns

munns@amazon.com
@chrismunns

— AR

https://secure.flickr.com/photos/dullhunk/202872717/

