
©2017,	Amazon	Web	Services,	Inc.	or	its	affiliates.	 All	rights	reserved

From Your Keyboard to Your
Customers without a Server to
Manage In-between
Chris Munns – Senior Developer Advocate - Serverless

About me:

Chris Munns - munns@amazon.com, @chrismunns
• Senior Developer Advocate - Serverless
• New Yorker
• Previously:

• AWS Business Development Manager – DevOps, July ’15 - Feb ‘17
• AWS Solutions Architect Nov, 2011- Dec 2014
• Formerly on operations teams @Etsy and @Meetup
• Little time at a hedge fund, Xerox and a few other startups

• Rochester Institute of Technology: Applied Networking and
Systems Administration ’05

• Internet infrastructure geek

https://secure.flickr.com/photos/mgifford/4525333972

Why are we
here today?

No servers to provision
or manage

Scales with usage

Never pay for idle Availability and fault
tolerance built in

Serverless means…

Serverless application

SERVICES (ANYTHING)

Changes in
data state

Requests to
endpoints

Changes in
resource state

EVENT SOURCE FUNCTION

Node.js
Python
Java
C#

Common Lambda use cases

Web
Applications
• Static

websites

• Complex web
apps

• Packages for
Flask and
Express

Data
Processing

• Real time

• MapReduce

• Batch

Chatbots

• Powering
chatbot logic

Backends

• Apps &
services

• Mobile

• IoT

</></>

Amazon
Alexa

• Powering
voice-enabled
apps

• Alexa Skills
Kit

IT
Automation

• Policy engines

• Extending
AWS services

• Infrastructure
management

Where do you ..

https://secure.flickr.com/photos/stevendepolo/5749192025/?

Frameworks

Chalice

ClaudiaJS

Node.js framework for deploying projects
to AWS Lambda and Amazon API
Gateway
• Has sub projects for microservices,

chat bots and APIs
• Simplified deployment with a single

command
• Use standard NPM packages, no need

to learn swagger
• Manage multiple versions

https://claudiajs.com
https://github.com/claudiajs/claudia

app.js:

var ApiBuilder = require('claudia-api-
builder')
var api = new ApiBuilder();

module.exports = api;

api.get('/hello', function () {
return 'hello world';

});

$ claudia create --region us-east-1 --api-module app

Chalice

Python serverless “microframework” for
AWS Lambda and Amazon API Gateway
• A command line tool for creating,

deploying, and managing your app
• A familiar and easy to use API for

declaring views in python code
• Automatic Amazon IAM policy

generation

https://github.com/aws/chalice
https://chalice.readthedocs.io

app.py:

from chalice import Chalice
app = Chalice(app_name="helloworld")

@app.route("/")
def index():

return {"hello": "world"}

$chalice deploy

Chalice

Chalice – a bit deeper
from chalice import Chalice

from chalice import BadRequestError

app = Chalice(app_name='apiworld-hot')

FOOD_STOCK = {

'hamburger': 'yes’,

'hotdog': 'no'

}

@app.route('/')

def index():

return {'hello': 'world'}

@app.route('/list_foods')

def list_foods():

return FOOD_STOCK.keys()

@app.route('/check_stock/{food}')

def check_stock(food):

try:

return {'in_stock': FOOD_STOCK[food]}

except KeyError:

raise BadRequestError("Unknown food '%s', valid choices are: %s" % (food, ', '.join(FOOD_STOCK.keys())))

@app.route('/add_food/{food}', methods=['PUT'])

def add_food(food):

return {"value": food}

Chalice

Chalice – a bit deeper
from chalice import Chalice

from chalice import BadRequestError

app = Chalice(app_name='apiworld-hot')

FOOD_STOCK = {

'hamburger': 'yes’,

'hotdog': 'no'

}

@app.route('/')

def index():

return {'hello': 'world'}

@app.route('/list_foods')

def list_foods():

return FOOD_STOCK.keys()

@app.route('/check_stock/{food}')

def check_stock(food):

try:

return {'in_stock': FOOD_STOCK[food]}

except KeyError:

raise BadRequestError("Unknown food '%s', valid choices are: %s" % (food, ', '.join(FOOD_STOCK.keys())))

@app.route('/add_food/{food}', methods=['PUT'])

def add_food(food):

return {"value": food}

Chalice

application routes

error handling

http method support

Meet
SAM!

AWS Serverless Application Model (SAM)

CloudFormation extension optimized for
serverless

New serverless resource types: functions, APIs,
and tables

Supports anything CloudFormation supports

Open specification (Apache 2.0)

https://github.com/awslabs/serverless-application-model

SAM template
AWSTemplateFormatVersion: '2010-09-09’

Transform: AWS::Serverless-2016-10-31

Resources:

GetHtmlFunction:

Type: AWS::Serverless::Function

Properties:

CodeUri: s3://sam-demo-bucket/todo_list.zip

Handler: index.gethtml

Runtime: nodejs4.3

Policies: AmazonDynamoDBReadOnlyAccess

Events:

GetHtml:

Type: Api

Properties:

Path: /{proxy+}

Method: ANY

ListTable:

Type: AWS::Serverless::SimpleTable

SAM template
AWSTemplateFormatVersion: '2010-09-09’

Transform: AWS::Serverless-2016-10-31

Resources:

GetHtmlFunction:

Type: AWS::Serverless::Function

Properties:

CodeUri: s3://sam-demo-bucket/todo_list.zip

Handler: index.gethtml

Runtime: nodejs4.3

Policies: AmazonDynamoDBReadOnlyAccess

Events:

GetHtml:

Type: Api

Properties:

Path: /{proxy+}

Method: ANY

ListTable:

Type: AWS::Serverless::SimpleTable

Tells CloudFormation this is a SAM
template it needs to “transform”

Creates a Lambda function with the
referenced managed IAM policy,
runtime, code at the referenced zip
location, and handler as defined.
Also creates an API Gateway and
takes care of all
mapping/permissions necessary

Creates a DynamoDB table with 5
Read & Write units

SAM template

From: https://github.com/awslabs/aws-serverless-samfarm/blob/master/api/saml.yaml

<-THIS
BECOMES THIS->

Introducing SAM Local

CLI tool for local testing of serverless apps

Works with Lambda functions and “proxy-
style” APIs

Response object and function logs available
on your local machine

Currently supports Java, Node.js and
Python

https://github.com/awslabs/aws-sam-local

DEMO!

Lambda execution model

Synchronous (push) Asynchronous (event) Stream-based

Amazon
API Gateway

AWS Lambda
function

Amazon
DynamoDBAmazon

SNS

/order

AWS Lambda
function

Amazon
S3

reqs

Amazon
Kinesis

changes

AWS Lambda
service

function

Amazon S3 Amazon
DynamoDB

Amazon
Kinesis

AWS
CloudFormation

AWS CloudTrail Amazon
CloudWatch

Amazon
Cognito

Amazon SNSAmazon
SES

Cron events

DATA STORES ENDPOINTS

DEVELOPMENT AND MANAGEMENT TOOLS EVENT/MESSAGE SERVICES

Event sources that trigger AWS Lambda

… and more!

AWS
CodeCommit

Amazon
API Gateway

Amazon
Alexa

AWS IoT AWS Step
Functions

Amazon API Gateway

Internet

Mobile Apps

Websites

Services

AWS Lambda
functions

AWS

All publicly
accessible
endpoints

Amazon
CloudWatch
Monitoring

Amazon
CloudFront

Any other
AWS service

Endpoints on
Amazon EC2

AWS Step
Functions

Create a unified
API frontend for
multiple micro-

services

Authenticate and
authorize

requests to a
backend

DDoS protection
and throttling for

your backend

Throttle, meter,
and monetize API

usage by 3rd

party developers

Amazon API Gateway

AWS Step Functions

“Serverless” workflow management with
zero administration
• Makes it easy to coordinate the

components of distributed applications
and microservices using visual workflows

• Automatically triggers and tracks each
step, and retries when there are errors,
so your application executes in order and
as expected

• Logs the state of each step, so when
things do go wrong, you can diagnose
and debug problems quickly

Task
Choice

Failure capture

Parallel Tasks

Computer power

Lambda exposes only a memory control, this also affects
the % of CPU core allocated to a function
Is your code CPU, Network or memory-bound, it could be
cheaper to give more memory

> Memory > Cores

Less memory is not always cheaper

128mb 11.722965sec $0.024628
256mb 6.678945sec $0.028035
512mb 3.194954sec $0.026830
1024mb 1.465984sec $0.024638

Stats for Lambda function that calculates 1000 times all
prime numbers <= 1000000

Lambda function runtimes

Icon made by Freepik from www.flaticon.com

Separate business logic from function signature

Choose dependencies/frameworks carefully

Interpret languages initialize much quicker but not
necessarily faster overall

Separate business logic from function
signature

app = Todo()

def lambda_handler(event, context):
ret = app.dispatch(event)

return {
'statusCode': ret["status_code"],
'headers': ret["headers"],
'body': json.dumps(ret["body"])

}

Leverage container reuse
• Lazily load variables in the global scope – functions stay
warm for several minutes

•Don’t load it if you don’t need it – cold starts are affected

s3 = boto3.resource('s3')
db = db.connect()

def lambda_handler(event, context):
global db
verify if still connected
otherwise carry on
if not db:

db = db.connect()
...

Cold start: Understand the function lifecycle

Download
your code

Download
your code

Start new
container

Cold start: Understand the function lifecycle

Bootstrap
the runtime

Cold start: Understand the function lifecycle

Download
your code

Start new
container

Bootstrap
the runtime

Start your
code

Cold start: Understand the function lifecycle

Download
your code

Start new
container

Bootstrap
the runtime

Start your
code

Cold start: Understand the function lifecycle

Full
cold start

Partial
cold start

Warm
start

Download
your code

Start new
container

AWS optimization Your optimization

Download
your code

Start new
container

Create
VPC ENI

Start your
code

Attach
VPC ENI

Full
cold start

Warm
start

Bootstrap
runtime

Partial
cold start

AWS optimization Your optimization

Cold start: Understand the function lifecycle
(VPC)

DEMO!

Cold starts look bad during development, not
frequent in prod

More memory is not always more expensive

Don’t over-optimize your code, just use the global
scope wisely

Takeaways

https://secure.flickr.com/photos/jasoneppink/499531891

Can’t move fast if you
can’t measure what's

going on.

Metrics and logging are a universal right!

CloudWatch Metrics:
• 6 Built in metrics for Lambda

• Invocation Count, Invocation duration, Invocation
errors, Throttled Invocation, Iterator Age, DLQ Errors

• Can call “put-metric-data” from your function code
for custom metrics

• 7 Built in metrics for API-Gateway
• API Calls Count, Latency, 4XXs, 5XXs, Integration

Latency, Cache Hit Count, Cache Miss Count
• Error and Cache metrics now support averages and

percentiles

Metrics and logging are a universal right!
CloudWatch Logs:
• API Gateway Logging

• 2 Levels of logging, ERROR and INFO
• Optionally log method request/body content
• Set globally in stage, or override per method

• Lambda Logging
• Logging directly from your code with your language’s equivalent

of console.log()
• Basic request information included

• Log Pivots
• Build metrics based on log filters
• Jump to logs that generated metrics

• Export logs to AWS ElastiCache or S3
• Explore with Kibana or Athena/QuickSight

AWS X-Ray

Application instrumentation (Node.js)

Build & test your
application

https://secure.flickr.com/photos/spenceyc/7481166880

Fully managed build service that compiles source code,
runs tests, and produces software packages

Scales continuously and processes multiple builds
concurrently

You can provide custom build environments suited to
your needs via Docker images

Only pay by the minute for the compute resources you
use

Can be used as a “Test” action in CodePipeline

Launched with CodePipeline and Jenkins integration

AWS CodeBuild

version: 0.1

environment_variables:
plaintext:

"INPUT_FILE": "saml.yaml”
"S3_BUCKET": ""

phases:
install:
commands:

- npm install
pre_build:

commands:
- eslint *.js

build:
commands:

- npm test
post_build:

commands:
- aws cloudformation package --template $INPUT_FILE --s3-

bucket $S3_BUCKET --output-template post-saml.yaml
artifacts:

type: zip
files:

- post-saml.yaml
- beta.json

buildspec.yml Example

version: 0.1

environment_variables:
plaintext:

"INPUT_FILE": "saml.yaml”
"S3_BUCKET": ""

phases:
install:
commands:

- npm install
pre_build:

commands:
- eslint *.js

build:
commands:

- npm test
post_build:

commands:
- aws cloudformation package --template $INPUT_FILE --s3-

bucket $S3_BUCKET --output-template post-saml.yaml
artifacts:

type: zip
files:

- post-saml.yaml
- beta.json

• Variables to be used by phases of
build

• Examples for what you can do in
the phases of a build:

• You can install packages or run
commands to prepare your
environment in ”install”.

• Run syntax checking,
commands in “pre_build”.

• Execute your build
tool/command in “build”

• Test your app further or ship a
container image to a repository
in post_build

• Create and store an artifact in S3

buildspec.yml Example

Continuous delivery service for fast and
reliable application updates

Model and visualize your software release
process

Builds, tests, and deploys your code every time
there is a code change

Integrates with third-party tools and AWS

AWS CodePipeline

Delivery via CodePipeline

Pipeline flow:
1. Commit your code to a source code repository
2. Package/Test in CodeBuild
3. Use CloudFormation actions in CodePipeline to

create or update stacks via SAM templates
Optional: Make use of ChangeSets

4. Make use of specific stage/environment
parameter files to pass in Lambda variables

5. Test our application between stages/environments
Optional: Make use of Manual Approvals

An example minimal Developer’s pipeline:

MyBranch-Source

Source
CodeCommit

MyApplication

Build

test-build-source
CodeBuild

MyDev-Deploy

create-changeset
AWS CloudFormation

execute-changeset
AWS CloudFormation

Run-stubs
AWS Lambda

This pipeline:
• Three Stages
• Builds code artifact
• One Development environment
• Uses SAM/CloudFormation to

deploy artifact and other AWS
resources

• Has Lambda custom actions for
running my own testing functions

Start with AWS CodeStar

Best
Practices

Lambda based “monoliths”

GET /pets
PUT /pets

DELETE /pets

GET /describe/pet/$id

PUT /describe/pet/$id

EVENT DRIVEN ONE LARGE LAMBDA FUNCTION

Lambda based “monoliths”

GET /pets
PUT /pets

DELETE /pets

GET /describe/pet/$id

PUT /describe/pet/$id

EVENT DRIVEN ONE LARGE LAMBDA FUNCTION

Lambda based “nano-services”

EVENT DRIVEN ONE LAMBDA PER HTTP METHOD

GET /pets
PUT /pets

DELETE /pets

GET /describe/pet/$id

PUT /describe/pet/$id

SAM Best Practices

• Unless function handlers share code, split them into their
own independent Lambda functions files or binaries

• Another option is to use language specific packages to share
common code between functions

• Unless independent Lambda functions share event
sources, split them into their own code repositories with
their own SAM templates

• Locally validate your YAML or JSON SAM files before
committing them. Then do it again in your CI/CD process

Lambda Environment Variables

• Key-value pairs that you can dynamically pass to
your function

• Available via standard environment variable APIs
such as process.env for Node.js or os.environ for
Python

• Can optionally be encrypted via AWS Key
Management Service (KMS)
• Allows you to specify in IAM what roles have access to

the keys to decrypt the information
• Useful for creating environments per stage (i.e. dev,

testing, production)

API Gateway Stage Variables

• Stage variables act like environment variables

• Use stage variables to store configuration values

• Stage variables are available in the $context object

• Values are accessible from most fields in API Gateway

• Lambda function ARN

• HTTP endpoint

• Custom authorizer function name

• Parameter mappings

Lambda and API Gateway Variables + SAM

Parameters:

MyEnvironment:

Type: String

Default: testing

AllowedValues:

- testing

- staging

- prod

Description: Environment of this stack of

resources

SpecialFeature1:

Type: String

Default: false

AllowedValues:

- true

- false

Description: Enable new SpecialFeature1

…

…

#Lambda

MyFunction:

Type: 'AWS::Serverless::Function'

Properties:

…

Environment:

Variables:

ENVIRONMENT: !Ref: MyEnvironment

Spec_Feature1: !Ref: SpecialFeature1

…

#API Gateway

MyApiGatewayApi:

Type: AWS::Serverless::Api

Properties:

…

Variables:

ENVIRONMENT: !Ref: MyEnvironment

SPEC_Feature1: !Ref: SpecialFeature1

…

AWS Systems Manager – Parameter Store
Centralized store to manage your
configuration data
• supports hierarchies
• plain-text or encrypted with KMS
• Can send notifications of changes

to Amazon SNS/ AWS Lambda
• Can be secured with IAM
• Calls recorded in CloudTrail
• Can be tagged
• Available via API/SDK
Useful for: centralized environment
variables, secrets control, feature
flags

from __future__ import print_function

import json

import boto3

ssm = boto3.client('ssm', 'us-east-1')

def get_parameters():

response = ssm.get_parameters(

Names=['LambdaSecureString'],WithDe
cryption=True

)

for parameter in
response['Parameters']:

return parameter['Value']

def lambda_handler(event, context):

value = get_parameters()

print("value1 = " + value)

return value # Echo back the first key
value

Create multiple environments from one template:
• Use Parameters and Mappings when possible to

build dynamic templates based on user inputs and
pseudo parameters such as AWS::Region

• Use ExportValue & ImportValue to share resource
information across stacks

• Build out multiple environments, such as for
Development, Test, Production and even DR using
the same template, even across accounts

SAM Template

Source
Control

Dev

Test

Prod

SAM Best Practices

Source

Source
AWS CodeCommit

MyApplication

Local development should lead to a formal pipeline!

Build
test-build-source
AWS CodeBuild

Deploy Testing
create-changeset
AWS
CloudFormation

execute-changeset
AWS
CloudFormation

Run-stubs
AWS Lambda

Deploy Staging
create-changeset
AWS
CloudFormation

execute-changeset
AWS
CloudFormation

Run-API-test
Runscope

QA-Sign-off
Manual Approval

Review

Deploy Prod
create-changeset
AWS
CloudFormation

execute-changeset
AWS
CloudFormation

Post-Deploy-Slack
AWS Lambda

This CodePipeline
pipeline:
• Five Stages
• Builds code artifact w/ CodeBuild
• Three deployed to “Environments”
• Uses SAM/CloudFormation to

deploy artifact and other AWS
resources

• Has Lambda custom actions for
running my own testing functions

• Integrates with a 3rd party
tool/service

• Has a manual approval before
deploying to production

Sounds easy!

https://secure.flickr.com/photos/macwagen/94975613

Serverless application

SERVICES (ANYTHING)

Changes in
data state

Requests to
endpoints

Changes in
resource state

EVENT SOURCE FUNCTION

Node.js
Python
Java
C#

aws.amazon.com/serverless

aws.amazon.com/serverless/developer-tools

Chris Munns
munns@amazon.com

@chrismunns
https://www.flickr.com/photos/theredproject/3302110152/

?
https://secure.flickr.com/photos/dullhunk/202872717/

