
Shopify’s Architecture to Handle 80K
RPS Celebrity Sales

Simon Eskildsen – @Sirupsen
Production Engineering Lead, Shopify

Shopify is
handling some of
the largest sales in
the world from
Kylie Jenner,
Kanye, Superbowl,
and others

— Tobi Lütke, CEO in internal essay on why we optimize for flash sales

“We learned to absorb these shocks and
become stronger as a result. [..] The
school of hard knocks has taught us well.”

500K $5.8B
Merchants powered Processed Q2, 2017

80K 40+
Peak RPS Daily deploys

Rails 2000+
Ruby on Rails since 2006 Employees

Traffic

Application

Data

Application

Data

Region A Region B

Traffic

Application

Data

Application

Data

Region A Region B

• Global Routing

• Openresty

• Bots

• Cache hits

• Checkout Throttling

Traffic

ISP

ISP

ISP

ISP

ISP

ISP

ISP

ISP

ISP

ISP

Region A

BGP ANNOUNCE
23.227.38.0/24

BGP ANNOUNCE
23.227.38.0/24

Region B

walrusser.myshopify.com
23.227.38.64

OpenResty allows
Lua scripting of
your load
balancers, it’s been
one of the most
impactful additions
to our stack in
recent memory

https://github.com/openresty/openresty

Nginx with OpenResty

Rule Banner

Kafka Logging

Edgecache

Checkout Throttle

worker_processes 1;
error_log logs/error.log;
events {
 worker_connections 1024;
}
http {
 server {
 listen 8080;
 location / {
 default_type text/html;
 content_by_lua '
 ngx.say("<p>hello, world</p>")
 ';
 }
 }
}

Bot squasher
analyzes the Kafka
stream of incoming
requests to ban
bots with a rule
banner module

Nginx with OpenResty

Rule Banner

KafkaBot Squasher

Kafka Logger

POST /checkout
BAN

23.227.38.178

Nginx with OpenResty

Edgecache

Memcached

GET /collections/walruses

HIT

Edgecache can
serve full page
cache hits out of
the load-balancers
in microseconds

Web Process

MISS

FILL

Nginx with OpenResty

Checkout Throttle

GET /checkout

Queue

/wait_area /checkout

Throttle

Checkout Throttle
throttles the
number of
customers in the
processing heavy
checkout path

Traffic

Application

Data

Application

Data

Region A Region B

Pod is an isolated
unit of one or more
shops

shop1

shop4

shop9

shop17

shop72

Data in Region A

shop3

shop72

shop92

shop18

shop64

shop22

shop88

shop0

sho52

shop23

Pod 14

Pod 2

Pod 7

Pod 14

Each Pod in Region A

Pod 2

Pod 7

MySQLRedis Memcache

MySQLRedis Memcache

MySQLRedis Memcache

Cron

Cron

Cron

Pod 14

Pod 2

Pod 7

MySQLRedis Memcache

MySQLRedis Memcache

MySQLRedis Memcache

Cron

Cron

Cron

Shared Workers

Pod 14

Pod 2

Pod 7

MySQLRedis Memcache

MySQLRedis Memcache

MySQLRedis Memcache

Cron

Cron

Cron

Shared Load Balancing

Genghis is our load-testing
tool to test scale

Pod Balancer
balances shops
between pods with
minimal downtime
to keep load and
size even

shop1

shop4

shop9

shop17

shop72
Pod Balancer

shop3

shop72

shop92

shop18

shop64

shop22

shop88

shop0

shop52

shop23

Pod 14

Pod 2

Pod 7

shop1

shop4

shop9

shop17

shop72

Pod Balancer

shop3

shop72

shop92

shop18

shop64

shop22

shop88

shop0

shop52

shop23

Pod 14

Pod 2

Pod 7

shop1

shop4

shop9
shop17

shop72

Pod Balancer

shop3

shop72

shop92

shop18

shop64

shop22

shop88

shop0

shop52

shop23

Pod 14

Pod 2

Pod 7

shop98

shop1

shop4

shop9

shop17

shop72

Pod Balancer

shop3

shop72

shop92

shop18

shop64

shop22

shop88

shop0

shop52

shop23

Pod 14

Pod 2

Pod 7

shop98

shop99
shop100

shop1

shop4

shop9

shop17

shop72Pod Balancer

shop3

shop72

shop92

shop18

shop64

shop22

shop88

shop0

shop52

shop23

Pod 14

Pod 2

Pod 7

shop98

shop99
shop100

Pod 74

shop1
shop4

shop9
shop17

shop72Pod Balancer

shop3

shop72

shop92

shop18

shop64

shop22

shop88

shop0

shop52

shop23

Pod 14

Pod 2

Pod 7

shop98
shop99

shop100

Pod 74

MySQLRedis MySQLRedis

COPY SHOP
SELECT * FROM products WHERE shop_id = 38493
SELECT * from orders WHERE shop_id = 38493

Source
Pod 9

Target
Pod 23

MySQLRedis MySQLRedis

COPY SHOP
SELECT * FROM products WHERE shop_id = 38493
SELECT * from orders WHERE shop_id = 38493

NEW CHECKOUT
INSERT INTO CHECKOUTS …

Source
Pod 9

Target
Pod 23

MySQLRedis
Source

Pod 9
MySQLRedis

Target
Pod 23

COPY SHOP_ID 238
SELECT * FROM products WHERE shop_id = 238
SELECT * from orders WHERE shop_id = 238

Bin Log
REPLICATE SHOP_ID 238
CHECKOUT id: 383293

MySQLRedis
Source

Pod 9
MySQLRedis

Target
Pod 23

LOCK SHOP_ID 238

Routing

UPDATE SHOP_ID 238
pod_id=23

Traffic

Application

Data

Application

Data

Region A Region B

Sorting Hat routes
requests for a shop
to the region the
pod is active in

Traffic

Region A Region B

ActivePod 7

InactivePod 2

ActivePod 14 Pod 14 Inactive

Inactive

ActivePod 2

Pod 7

Pod 14

Sorting Hat

GET /products
Host: sneakershop.com

Routing

ROUTE
sneakershop.com

shop238
pod2:B

Traffic

Application

Data

Application

Data

Region A Region B

Pod Mover moves
pods between
regions with
minimal downtime

Traffic

Region A Region B

ActivePod 7

Pod 2 ActivePod 14 Pod 14 Inactive

Inactive

ActivePod 2

Pod 7

Pod 14

Sorting Hat

InactivePod 2

Traffic

Region A Region B

ActivePod 7

Pod 2 ActivePod 14 Pod 14 Inactive

Inactive

ActivePod 2

Pod 7

Pod 14

Sorting Hat

InactivePod 2

Update Routing for pod to target region
pod2:b -> pod2:a

Sorting Hat routes requests to target region

Disable cron in both regions

Fail over MySQL to target region

Enable cron in both regions

Transfer jobs to target region

What about errors while
the database fails over?

Nginx with OpenResty

Pauser

POST /checkout
(during failover)

Pauser will pause
requests in the
middle of failovers
to avoid serving
errors

QueueThrottle

HTTP 200
(seconds later)

Update Routing for pod to target region
pod2:b -> pod2:a

Sorting Hat routes requests to target region
and pause requests

Disable cron in both regions

Fail over MySQL to target region

Enable cron in both regions

Resume requests

Transfer jobs to target region

Cloud Migration
with the Pods
Architecture

shop1

shop4

shop9

shop17

shop72

Region A

shop3

shop72

shop92

shop18

shop64

shop22

shop88

shop0

sho52

shop23

Cloud Region C

Thanks!
@Sirupsen

