
High Availability Distributed

(Micro-)services

Clemens Vasters – Microsoft Azure

@clemensv

ice

Event Hubs

Telemetry

stream

ingestion

Service Bus

Cloud

messaging

Event Grid

Event

distribution

IoT Hub

IoT messaging

and manage-

ment

Notification

Hubs

Mobile push

notifications

Relay

Discovery,

Firewall/NAT

Traversal

Microsoft Azure

Microsoft Azure services I work(-ed) on….

Azure Messaging by the numbers

695 Billion
Message operations on

Azure Service Bus
Messaging
per month

5.1 Trillion
Requests per week

in Event Hubs

8,432,540
Requests per second

average 24/7

50ms
Average Event Hubs

send latency

1.8 Million
Message Queues and
Topics in production

>28 PB
Monthly data volume

>100,000
Daily active Service Bus

Namespaces

99.9984%
Success Rate

• … is responsible for holding, processing,
and/or distributing particular kinds of
information within the scope of a system

• … can be built, deployed, and run
independently, meeting defined
operational objectives

• … communicates with consumers and other
services, presenting information using
conventions and/or contract assurances

• … protects itself against unwanted access,
and its information against loss

• … handles failure conditions such that
failures cannot lead to information
corruption

A “Service” is software that …

• Defining property of services is that they’re Autonomous
• A service owns all of the state it immediately depends on and manages
• A service owns its communication contract
• A service can be changed, redeployed, and/or completely replaced
• A service has a well-known set of communication paths

• Services shall have no shared state with others
• Don't depend on or assume any common data store
• Don't depend on any shared in-memory state

• No sideline communications between services
• No opaque side-effects
• All communication is explicit

• Autonomy is about agility and cross-org collaboration

Services: Autonomous Entities

• An autonomous service owns its own uptime
• If a downstream dependency service is unavailable, it may be

acceptable to partially degrade capability, but it’s not acceptable to go
down blaming others

• Any critical downstream dependencies need to be highly available, with
provisions for disaster recovery.

• A service can rely on a highly-available messaging middleware layer as
a gateway to allow for variable load or servicing needs

• An autonomous service honors its contract
• Version N honors the contract of Version N-1. Contracts are assurances.

• Deprecation of a contract breaks dependents; have a clear policy

Interdependencies

• Service owners aim to meet operational objectives so that they can
provide operational assurances:

• What level objective achievement can and does the service owner
commercially commit to?
• Example: Operational objective 99.99% availability/week (10 minutes max

downtime) might turn into assurance 99.95% (50 minutes max downtime)

• Latency? Throughput? Data Loss? Disaster/Failure Recovery Time?

• What is the support lifecycle commitment for APIs and contracts?
• How many versions? Minimum deprecation notice?

Operational Assurances

The modern notion of
“Service” is not about code
artifact counts or sizes or

technology choices.

It’s about ownership.

• A system is a federation of
services and systems, aiming to
provide a composite solution for
a well-defined scope.

• The solution scope may be
motivated by business,
technology, policy, law, culture,
or other criteria

• A system may appear and act as
a service towards other parties.

• Systems may share services

• Consumers may interact with
multiple systems

System

…

• Key rationale for layers: Resilience against changes
in ambient contracts.

• Communication and Presentation Layers
• Lots of changes, fairly frequently

• New UX methods and layouts, new assets
• New contracts and schemas
• New protocols

• Can have multiple concurrent interfaces
• Each change has low impact, but work adds up

• Resource Access Layers
• Fewer changes, rather infrequently

• Downstream dependency services make compatibility
assurances

• Sometimes massive impact, often wholesale rewrites

• Goal is for core logic to be resilient against
interface changes

Rationale for Layers

HTTP API V1

HTTP API V2

Queue API

HTML5 UXiOS App API

Service

A

Service

B

Service

C

• Term coined ~2002 by @PatHelland

• “Fiefdom”: Autonomous Service

• “Emissary”: Logic/Code
• JavaScript on Web Pages

• Client SDKs

• „A service owns its contract“ can also
manifest in it owning SDKs for all relevant
platforms while keeping the wire contract
private.

• We‘ll see more of this around „edge
compute“

“Fiefdoms and Emissaries”

• Tiers are about meeting operational objectives
• Aspects of one service or even one layer may have

different scalability and reliability goals

• Resource governance (I/O, CPU, Memory) needs may
differ between particular functions

• UX tier will be more efficient and more adaptable with
client-based rendering

• Tier boundary most often is a process boundary
• On same machine, across machines

• In same organization, across organizations

• In trusted environment, across trust boundaries

• Tier boundaries often cut through layers
• Cuts may separate “yours” and “theirs”

• Ex: “Your” hosted web code and “their” browser

• Ex: “Your” data access code and “their” database

Tiers: Runtime Organization API Gateway

Service Backend

Browser

Web Server

2 tiers, 1 layer

2 tiers, 2 layers

Services vs. Microservices

Running Tiers as Services

• Scales by cloning the app on multiple

servers/VMs/Containers

• A microservice application

separates functionality into

separate smaller services.

• Scales out by deploying each service

independently creating instances of these services

across servers/VMs/containers

• A monolith app contains domain

specific functionality and is

normally divided by functional

layers such as web, business and

data
App 1 App 2

App 1

Runtime and Deployment Models

Monolith Microservices

• Single monolithic database

• Tiers of specific technologies

Monolithic approach Microservices approach

• Graph of interconnected microservices

• State typically scoped to the microservice

• Variety of technologies used

stateless
services

stateless services with
separate stores

stateful
services

stateless
presentation
services

State Management

Thumbnail

Service

Thumbnail

ServicePhoto Share

Service

Photo Share

Service

Photo Share

Service

Photo Share

Service
Thumbnail

Service

Photo Share Service

Thumbnail

SharedLib-v7

Photo Share

Service

SharedLib-v1

Photo Share

Service

node.js

Thumbnail

Service

.NET

Photo Share

Service

V1

Thumbnail

Service

V1

Thumbnail

Service

SharedLib-v7

Scale Independently Different Technology Stacks

Conflicting Dependencies

Independent Deployments

Thumbnail

Service

V2

SharedLib-v1

Microservice Architecture Benefits

Microservices Platform Requirements

Azure Other CloudsOn Premise

Data centers

Azure Service Fabric
Any OS, Any Cloud

Dev Box

Service Fabric Programming Models & CI/CD

Azure Other CloudsDev Box On Premise

Data centers

Scale and Reliability

Clustering

Machine 1 Machine 2

Machine 3

Service PService B

Service B

Service B
Service becomes

over-stressed

Move services onto multiple machines. More

resources available to both services.

Requirement: No shared cross-service state.
Service becomes

over-stressed

Split service to run on cluster of

multiple machines.

Requirement for simple case: No

cross-instance state.

LB

Clustering

Machine 1 Machine 2

Machine 3

Service P

Service B

Service B

Modern clustering infrastructure can allow for

easy and consistent state-sharing and failover

of ownership for aspects of partitioned

workloads

LB

Multi-Node Failover Clustering

Gateway Tier

HTTPS

Stateful Compute Tier

Storage Tier

Node Node Node

B1 C1 D1H1 I1 J1N1 O1 P1

A2 A3 B1B2

Storage Container Storage Container

C1 D1H1 I1 J1N1 O1 P1

A2
A3

O2

Primaries
(Owners)

Secondaries
(Fallback)

A2

Node

A1 G1 M1

Storage Container

A1 B1G1 M1

O3

https://myservice.example.com

Failure of any node – in
gateway, compute, or storage

– leads to an automated
"failover" to one of at least

two secondaries.

Secondaries are continuously
updated with the all

information required to
instantly take ownership when

needed.

RPC, Messaging, and
Eventing

• “REST“ is great for interactively
accumulating and acting on
state from multiple sources.
• Let‘s not pretend all clients are

like that – there‘s a lot more

• HTTP and RPC are great to
obtain immediate answers.
• The longer it takes to generate

the answer, the more brittle the
model becomes

Communication

Command

Query

Job Handover

Report

Measurement

Notification

Request

Assignment

Update

Transfer

Trace

Command

Query

Job

Handover

Report

Measurement

Notification

Request

Assignment

Update

Transfer

Trace

Intents Facts

Intents Facts

Messaging

Expectations

Conversations

Contracts

Control Transfer

Value Transfer

History

Context

Order

Schema

Eventing

Messaging Eventing

A B

C

A ?

?

Discrete Series

Events

Independent

Report State Change

Actionable

Time Ordered

Context Partitioned

Analyzable

Report Condition

• Report independent, actionable
state changes to authorized
subscribers
• “Blob created”

• “Sales lead created”

• “Order confirmed”

• Allows simple, noninvasive,
reactive extension of the
functionality of a service

Discrete Events are an Extensibility Enabler

Enter “Serverless“

• A service can be made up of a
fleet of independently deployed
functions that jointly operate on
a shared set of resources

• The service interface is made up
from the union of the function
interfaces

• The function interfaces may be a
mix of RPC-style call interfaces
and event driven ones

How do Functions/Lambdas fit?

Shared

Resources

F
u

n
ctio

n

API and

Implementation

Device

Collect Readings

Ingestor

Read Partition

Example: Data Series Processing

🕓

Analyzer

“Pull” flow towards stateful instance

Stateful instances and Actors

Device

Route Alarm

!

Distributor

Subscrip-

tions

!

!

!

!

!

L

B

Example: Discrete Event Handling –Alarms

Handlers

“Push” flow towards stateless handlers

“Serverless” Functions

Event Grid

Sub-second end-to-end latency in the 99th percentile

10,000,000 events per second per region

24-hour retry with exponential back off for events not delivered

Push Push

* Coming soon

Platform-level event plane that’s “just there”

Build twice right.

But Lock-In?!

Building the same solution twice, with shared code, leveraging as much of Azure and AWS PaaS services is

operationally cheaper and more reliable than any DIY alternative in most companies’ reach.

• … is responsible for holding, processing,
and/or distributing particular kinds of
information within the scope of a system

• … can be built, deployed, and run
independently, meeting defined
operational objectives

• … communicates with consumers and other
services, presenting information using
conventions and/or contract assurances

• … protects itself against unwanted access,
and its information against loss

• … handles failure conditions such that
failures cannot lead to information
corruption

A “Service” is software that …

