goto; GOTO Copenhagen 2019
copenhagen

VELL
work

Henry Coles

Mutants
Oor you

pitest.org

Questions

& 7
?/;,/ '
77 A
v T
3y

How do I know if I can trust
test suite I inherited

How do I know if mv feam i
writing effective tests?

o7 U

How do I assess the gualily

test suite?

mimon developer answers

my tests are

my tests are

¢ Are you sure?

my tests are

® Are you sure?
® What about the tests you didn’'t write?

my tests are

® Are you sure?
® What about the tests you didn’'t write?
® How do you test drive changes to your tests?

1y tests are

® Are you sure?

® What about the tests you didn’'t write?

® How do you test drive changes to your tests?
¢ Do you write tests for your tests?

1y tests are

Are you sure?

What about the tests you didn't write?

How do you test drive changes to your tests?
Do you write tests for your tests?

Do you write tests for the tests for your tests??

Peer review

Peer review

Cood but ..

Peer review

Cood but ..

¢ Catches problems inconsistently

Peer review

PP] t
floaad b
OOCL Ut ...

¢ Catches problems inconsistently
¢ Labour intensive

Peer review

Cood but ..

¢ Catches problems inconsistently
¢ Labour intensive
¢ Slow form of feedback

Most Commeonly one of :-

Most Commeonly one of :-

¢ Line

verac

Most Commeonly one of :-

¢ Line
® Branch

Most Commeonly one of :-

¢ Line
® Branch
¢ Statement

But there are mar

But there are ma others

¢ Data

2 /./~ 4

ut there are manv others

¢ Data
¢ Path

¢ Data
¢ Path
¢ Modified condition / decision

ut there are manv

® Data

¢ Path

¢ Modified condition / decision
¢ more ..

1e of these of these coverage
measures tell you which parts of
your code have been festied

de coverage does tell you

public class AClass {
private int count;

public void count(int i) {
if (1i>= 10) {
count++;
}
}

public void reset() {
count = 0;
}
}

public class AClass {
private int count;

public void count(int i) {
if (i > 10) { // This line has been ezecuted
count++;
}
}

public void reset() {
count = 0;

}

public class AClass {
private int count;

public void count(int i) {
if (i > 10) { // This line has been ezecuted
count++; // This line has been executed
}
+

public void reset() {
count = 0;
}
}

77

de coverage co

s tell you

public class AClass {
private int count;

public void count(int i) {
if (i > 10) { // This line has been ezecuted
count++; // This line has been executed
}
+

public void reset() {
count = 0; // This line has not been exzecuted

b
}

QTest
public void bossSaysMustHaveCodeCoverage() {
AClass a = new AClass();
a.count (0);
a.count(9);
a.count(11);

most tests are written in
good faith

QTest

public void shouldFailWhenGivenFalse() {
assertEquals("FAIL", foo(false));

}

QTest
public void shouldBeOkWhenGivenTrue() {
assertEquals("0OK", foo(true));

}

public static String foo(boolean b) {
if (b) {
performVitallyImportantBusinessFunction();
return "OK";

}
return "FAIL";

+

Code coverage fells you only

what has not been tested

S0 our answers aren't that great

2

Back in 1971 Richard

i

Lipton

oc answer to our

guestions

4

Back in 1971 Richard Lipton
good answer to our

£ =

e 7 2 |

guestions

decades before most people were writing unit tests.

‘Fault
puter program

fHe wrote a paper entitled

93

S

diagnosis of com

If you want to know if a test
suite has properly checked
code - introduce a hug

SOIT

Then see if your test suite can

Here's a bug

public void count(int i) {
if (1> 10) {
count++;
}
}

Here's a bug

public void count(int i) {
if (i > 10) { // changed >= to >
count++;
}
+

QTest
public void shouldStartWithEmptyCount() {
assertEquals(0,testee.currentCount()) ;

+

QTest

public void shouldCountIntegersAboveTen() {
testee.count(11);
assertEquals(1l,testee.currentCount());

QTest

public void shouldNotCountIntegersBelowTen() {
testee.count (9);
assertEquals(0,testee.currentCount()) ;

Our tests still pass

Our test suite is

test case is

QTest

public void shouldCountIntegersOfExactlyTen() {
testee.count (10);
assertEquals(l,testee.currentCount());

+

inology

A change such as >= to > is a mu

A change such as >= to > is a mufation operator
Lots are possible

® .= fo <=

A change such as >= to > is a mut
Lots are possible

® >=to <=

® >=to >

minology

A change such as >=to > isa m
Lots are possible

® .= fo <=
® >=to >

® .= to =

A change such as >=
Lots are possible

>= fo <=

>= to >

[}

>= to

Emem o B adlomdl). B o Bl abdlomadl).
foo.aMethod(); to //foo.aMethod();

A}

So:

A change such as >= to > is a mutation operator
Lots are possible

e terminology

>= fo <=
>={o >
foo.aMethod(); to //foo.alMiethod();

([]
[]
® »=to =
°
® foo.alMethod(); to fooc.anotherMethod();

A change such as >= to > is a mutation operator
Lots are possible

1e termineology

® >=to <=

® >=to >

® >=to =

® foo.alMethod(); to //foc.aMethod();

® foo.aMethod(); to foc.anotherMethod();
® 0tel

Some terminology

A change such as >= to > is a mutation operator
Lots are possible

>= to <=

>= to >

>=to =

foo.aMethod(); to //foo.alMiethod();
foo.aMethod(); to foo.anotherMethod();
Oto 1

etc etc

We can create lofs of mutants and we can do it aufomatically

cdoes not cause a test

to fail it survived

So killing is good

But what about this?

class Foo {
int min;
public void bar(int i) {
if (i < min) {
min = 1i;
+
System.out.println("" + min);
+
+

class Foo {

int min;

public void bar(int i) {
if (i <= min) { // changed < to <=

min = 1i;

}
System.out.println("" + min);

}

+

class Foo {

int min;

public void bar(int i) {
if (i <= min) { // changed < to <=

min = 1i;

}
System.out.println("" + min);

}

+

But it still behaves the same

It is not possible to write a test
that kills this mutant

Equivalent mutants are
considered to be a nroblem

They need a human to examine them

Equivalent mutants are

They need a human to examine them
We’ll talk more about them later

Mutation testing mghﬁzgms

that definitely is

It gives a verv high degree of

confidence in a test suite

it effectively

It effectively

So you can refactor your tests without fear

to th

S0 what happened

1971 - Lipton’'s paper

Jackson esd

Baband

eleven year.-old
slay up past his

bedtime?

P

his six gold records

THE

PUSH
& IMPEACH

CHARGING
NIXON'S -
MEN

ONCE MORE, W

|

2y1slon

..and
What It
Takes

To Be

EI.EOTIDH SPECIA ;

Just 9 short ve

Just 9 short ve

The first automated tool!

Lachy Doy
Is Wireving
firitain

STRIHIHG IT RICH

Amuru:a 5
Risk Takers

i’" &

Lots of research papers

If your test suite can find
artificial bugs, can it find real
ones?

hypothesis

The c
hypothesis

‘Programimers are generally competent enough to produce code that
is at least almeost right”

The c
hypothesis

‘Programimers are generally competent enough to produce code that
is at least almeost right”

Mutation testing infroduces

small changes to the code

Mutation testing infroduces
simall changes to the code

So the mutants look like bugs from our “‘competent’ programmer

me real bugs do look like this

me real bugs do look like this

But others are more complex

effect

effect

“Tests that can distinguish a program differing from a correct one by
only simple errors can also implicitly distinguish more complex
errors’

There is
support

15, Offutt. 1989. The coupling effect: fact or fiction. In Proceedings of the ACM
SIGSOFT '89 third symposium on Software testing, analysis, and verification

There is
support

“The major conclusion from this investigation is that by explicitly
testing for simple faults, we are also implicitly testing for more
complicated faults”

1K. Offutt. 1989. The coupling effect: fact or fiction. In Proceedings of the ACM
SIGSOFT '89 third symposium on Software testing, analysis, and verification

1ent

state

But this is just a
statement

You will find counter examples

S0 if your tests find mut
they will probably find

RFGHANIETAN: BEADTY HLINT ° ISDLA & PAEESTAN: WAR DASCE

FLAT-OUT

COOL!

i ok Bando e busiem
T Pl g Agple'h e
M g, e i sl B

T e,
PR ——
I s et T

Jester

‘Why just think your tests are good when you can know for sure?
Sometimes Jester tells me my tests are airtight, but sometimes the
changes it finds come as a bolt out of the blue. Highly
recommended.’

B mwah B %
Kent seck

2019

2019

in use all over the world

2019

In use all over the world
Folk keep about it at

High profile projects

Recruitment websites
Tractor sales
Insurance

Banking

Biotech

Media

S0 what happened?

40 years of research M%Qesze
there were two fundamental

S

1. Too slow

Too slow

sl

® Need to compile the code thousands of times

sl

® Need to compile the code thousands of times
® Need to run the test suite thousands of times

A small library for dealing with dates and times.

A small library for dealing with dates and times.

® g8k lines of code

A small library for dealing with dates and times.

® g8k lines of code
® 70k lines of test code

A small library for dealing with dates and times.

® 68k lines of code
® 10k lines of test code
¢ Takes about 10 seconds to compile

A small library for dealing with dates and times.

® 68k lines of code

® 70k lines of test code

¢ Takes about 10 seconds to compile

¢ Takes about 16 seconds to run the unit tests

Lets say we have 10k m

(100000)

compile

4+
(160000)

test

260000
seconds

/2 hours

3 days!

rv mutation testing is
mpractical

So I tried to build a mutation testing tool

pitest.org

1 ruth

A {inv assertion library from
Google

AEbout 3000 Jlines of cod

e

Takes about 3 seconds fo com

Takes about 7 seconds to run the

tests

Has about 90% line coverage

Lets try it

mvn -Ppitest test

So why didn't that take 2 hours?

of reasons

..;,
P
N

It rans in parallel

parallel

Mutation testing is embarrassingly parallelisable

Mutation testing is embarrassingly parallelisable
Most machines these days have at least 2 cores

Mutation testing is embarrassingly parallelisable
Most machines these days have at least 2 cores
2 cores = half the time

mpilation cycles

Mutants created by bytecode manipulation

Mutants created by bytecode manipulation
Can generate hundreds of thousands in <l second

Test prioritisation

oritisation

Run the cheap tests first, the expensive ones later

oritisation

Run the cheap tests first, the expensive ones later
stop when one fails

Test selection

Pitest gathers per test line coverage data

Pitest gathers per test line coverage data

Tests are only run against a mutant if they exercise the mutated line
of code

This

public class AClass {
private int count;

public void count(int i) {
if (i>=10) {
count++;
+
}

public void reset() {
count = 0;

by

public class AClass {
private int count;

shouldNotCountintegersBelowTen
public void count(i&;/if/f///
if (1> 10) {

count++;
+
+

public void reset() {
count = 0;

by

public class AClass {
private int count;

shouldNotCountintegersBelowTen
public void count(iﬂg/if/z///
if (i >= 10)

[——

count++ ;—

shouldCountintegersAboveTen
}

}

public void reset() {
count = O;
+
}

public class AClass {
private int count;

shouldNotCountintegersBelowTen
public void count(iﬂg/if/z///
if (i >= 10)

[——

count++ ;q— shouldCountintegersAboveTen

}
¥ shouldStartWithEmptyCount
public void reset() {

count = 0;
}

}

10

11

12

13

public class AClass {
private int count;

}

public void count(int i) {

+

public void reset() {

+

if (i B 10) {
count++;

by

count = 0;

1 public class AClass {

2 private int count;

3

4 public void count(int i) {
5 if (i W 10) {

6 count++;

7 }

8 +

9

10 public void reset() {
11 count = 0;

12 }

13

® We will only run 2 tests for the mutation on line 5

1 public class AClass {

2 private int count;

3

4 public void count(int i) {
5 if (i W 10) {

6 count++;

7 }

8 +

9

10 public void reset() {
11 count = 0;

12 }

13

® We will only run 2 tests for the mutation on line 5
® The mautation will survive as we're missing an effective test case

public class AClass {
private int count;

public void count(int i) {
if (i>= 10) {
/lcount++;
}

}

public void reset() {
count = O;
+
+

1 public class AClass {

2 private int count;

3

1 public void count(int i) {
5 if (i>= 10) {

: Jfcount++;

7 X

s +

9

10 public void reset() {
11 count = 0;

12 }

15}

® We will run only 1 test for the mutation on line 6

1 public class AClass {

2 private int count;

3

1 public void count(int i) {
5 if (i>= 10) {

: Jfcount++;

7 X

s +

9

10 public void reset() {
11 count = 0;

12 }

15}

® We will run only 1 test for the mutation on line 6
® The mutation will be killed

10

11

12

13

public class AClass {
private int count;

}

public void count(int i) {

+

public void reset() {

+

if (i >= 10) {
count++;

}

count = [ll;

1 public class AClass {

2 private int count,

3

1 public void count(int i) {
5 if (i > 10) {

6 count++;

7 }

8 +

9

10 public void reset() {
11 count = [ll;

12 }

15}

® We will run no iesis for the mutation on line 11

1 public class AClass {

2 private int count,

3

" public void count(int i) {
5 if (i > 10) {

6 count++;

7 }

8 +

9

10 public void reset() {
11 count = [ll;

12 +

13}

® We will run no tests for the mutation on line 11
® The mutation will be instantly marked as survived

1 public class AClass {

2 private int count,

3

" public void count(int i) {
5 if (i > 10) {

6 count++;

7 }

8 +

9

10 public void reset() {
11 count = [ll;

12 +

13}

® We will run no testis for the mutation on line 11
® The mutation will be instantly marked as survived
® This is makes a huge different

To analyse JodaTim

To analyse Jod

¢ @ minutes on cheap dual core laptop

s on a gquad core

s on a gquad core

To analyse JodaTim

® @ minufes on cheap dual core laptop
® 3 minuies on a quad core

That's over 1000 timmes faster than early systems

But what about » ebases?

7
&

W
=8
i
@
0
=
Bag
=5
=

To understand why
talk about what m

TP P-V LT ,3
zseful fo

and how to use it

A lot of the research assumed
had to work like this

Write a
bunch of code

R

Pass it To a QA
feam To mutation fest

Many developers assume
use it like this

Write a
bunch of code

and tests

Write a

bunch ot code
aV\OI '\'65'\'5 \/
Mutation test

overnight on a server

Write a

bunch ot code
aV\OI '\'65'\'5 \/
Mutation test

overnight on a server

Brag aboub

size ot your metric

But I only ever use it like this

N

V}Vi.J\f.e 2 Make the
?'e'sqg Test pass
Retactor

Mutation test

\/a{lfec’feol code

N

Spike ouf Write tests

/ code

fix the mess

Mutation test
\/ attfected code

without mutation testing

I only have to analyse a smmall

slice of the code

2sn 't matter how big the
lebase is

COC

Iways s

1S a

Pitest integrates with version
control

Pitest integrates with version
control

But often I just target it at a certain package

IViutation testing is a powerful

2 |

care what the code
coverage of a project is

V't care what the m
score for a project is

)
o
A\
=9

=

@
3

@

@

i

@

&
S

Equivalent m

Research suggests it takes 15
ntes to assess if a m
guivalent

mes that the person

3

sn't just written the

22>

But this assum
assessing hasn’
coce

It's much less effort as part of a development feedback loop

es that the person
just written the

But they can provid

information for a

developer

But they can provid

They're a side benefit

three %hmgs

a test

Or sometimes fix a buggy test

public void someLogic(int i) {
if (1 <= 100) {
throw new IllegalArgumentException();
+

if (1 > 100) {
doSomething() ;
}

public void someLogic(int i) {
if (1 <= 100) {
throw new IllegalArgumentException();
+

if (1 >= 100) { // mutated > to >=
doSomething() ;
}

public void someLogic(int i) {
if (1 <= 100) {
throw new IllegalArgumentException();

}
if (1 >= 100) { // mutated > to >=
doSomething() ;
}
}

i can never be 100 at this point

public void someLogic(int i) {
if (1 <= 100) {
throw new IllegalArgumentException();
+

if (1 >= 100) { // mutated > to >=
doSomething() ;
}
}

i can never be 100 at this point

So the mutant is equivalent

public void someLogic(int i) {
if (1 <= 100) {
throw new IllegalArgumentException() ;
}

doSomething() ;
}

public void someLogic(int i) {
if (1 <= 100) {
throw new IllegalArgumentException() ;
}

doSomething() ;
}

Functionally equivalent but there’'s less of it

%esimg is really
highlighting red code

class Foo {
int min;
public void bar(int i) {
if (i < min) {
min = i;
+
System.out.println("" + min);
+
}

class Foo {
int min;
public void bar(int i) {
if (1 <= min) { // mutate < to <=
min = i;
+
System.out.println("" + min);
+
}

quivalent

guivalent

We can make it go away

class Foo {
int min;
public void bar(int i) {
min = Math.min(i, min);
System.out.println("" + min);
}
}

class Foo {
int min;
public void bar(int i) {
min = Math.min(i, min);
System.out.println("" + min);
}
}

The code now expresses its infent

Mutation testing creates pres
to

® Reduce the amount of code

® Reduce the amount of code
¢ Reduce the amount of duplication

(performance is not a concern of unii testing)

® Yes - delete the code

Is it a prem

® Yes - delete the code
® No - ignore the mutant

’////,,/
'

did pitest find

in Google
Trath?

> test errors

itivelntSubjectArray

public void isNotEqualTo(Object expected) {
int[] actual = getSubject();

try {
int[] expectedArray = (int[]) expected;
if (actual == expected || Arrays.equals(actual, expectedArray)) {

failWithRawMessage("/s unexpectedly equal to %s."
, getDisplaySubject ()
, Ints.asList(expectedArray));
}
} catch (ClassCastException ignored) {
}
}

N=Seo

velntSubjectArray

public void isNotEqualTo(Object expected) {
int[] actual = getSubject();

try {
int[] expectedArray = (int[]) expected;
if (actual == expected || Arrays.equals(actual, expectedArray)) {
//failWithRawMessage (")s unexpectedly equal to /s."
// , getDisplaySubject ()
// , Ints.asList(expectedArray));
}
} catch (ClassCastException ignored) {
}

}

Mutant is covered
test

by at least one

QTest
public void isNotEqualTo_FailEquals() {
try {
assertThat (array(2, 3)).isNotEqualTo(array(2, 3));
} catch (AssertionError e) {
assertThat (e) .hasMessage(
"<(int[]) [2, 3]> unexpectedly equal to [2, 3].");

d by at least one

fest
Q@Test
public void isNotEqualTo_FailEquals() {
try {
assertThat (array(2, 3)).isNotEqualTo(array(2, 3));
throw new Error("Expected to throw"); // <-—-— missing

} catch (AssertionError e) {
assertThat (e) .hasMessage(
"<(int[]) [2, 3]> unexpectedly equal to [2, 3].");

a2

guivalent m

itiveDoubleArraySubject

public void isNotEqualTo(Object expectedArray, double tolerance) {
double[] actual = getSubject();
try {
double[] expected = (double[]) expectedArray;
if (actual == expected) {
failWithRawMessage (
"%s unexpectedly equal to %s.", getDisplaySubject(), Doubles.asList(expected));
}
if (expected.length != actual.length) {
return; // Unequal-lengthed arrays are not equal.
}
List<Integer> unequallndices = new ArrayList<Integer>();
for (int i = 0; i < expected.length; i++) {
if (!MathUtil.equals(actual[i], expected[i], tolerance)) {
unequallndices.add(i);

}
}
if (unequalIndices.isEmpty()) {
failWithRawMessage(
"%s unexpectedly equal to %s.", getDisplaySubject(), Doubles.asList(expected));
}

} catch (ClassCastException ignored) {
// Unequal since they are of different types.

itiveDoublel

irraysSubject

public void isNotEqualTo(Object expectedArray, double tolerance) {
double[] actual = getSubject();
try {
double[] expected = (double[]) expectedArray;
if (actual == expected) {
// failWithRawMessage (
// "Js unexpectedly equal to Js.", getDisplaySubject(), Doubles.asList(expected));
}
if (expected.length != actual.length) {
return; // Unequal-lengthed arrays are not equal.
}
List<Integer> unequallndices = new ArrayList<Integer>();
for (int i = 0; i < expected.length; i++) {
if (!MathUtil.equals(actual[i], expected[i], tolerance)) {
unequalIndices.add(i);

}
}
if (unequalIndices.isEmpty()) {
failWithRawMessage (
"%s unexpectedly equal to %s.", getDisplaySubject(), Doubles.asList(expected));
}

} catch (ClassCastException ignored) {
// Unequal since they are of different types.

itiveDoubleArraySubject

public void isNotEqualTo(Object expectedArray, double tolerance) {
double[] actual = getSubject();
try {
double[] expected = (double[]) expectedArray;
if (actual == expected) {
failWithRawMessage (
"%s unexpectedly equal to %s.", getDisplaySubject(), Doubles.asList(expected));
}
if (expected.length != actual.length) {
return; // Unequal-lengthed arrays are not equal.
}
List<Integer> unequalIndices = new ArrayList<Integer>();
for (int i = 0; i < expected.length; i++) {
if (!MathUtil.equals(actual[i], expected[i], tolerance)) {
unequalIndices.add(i);

}
}
if (unequalIndices.isEmpty()) {
failWithRawMessage(
"%s unexpectedly equal to %s.", getDisplaySubject(), Doubles.asList(expected));
¥

} catch (ClassCastException ignored) {
// Unequal since they are of different types.

Performance isn't unit

Performance isn't unit

Optimisation makes sense in this case

public void isNotEqualTo(Object expectedArray, double tolerance) {
double[] actual = getSubject();
try {
double[] expected = (double[]) expectedArray;
if (actual == expected) {
failWithRawMessage(
"%s unexpectedly equal to %s.", getDisplaySubject(), Doubles.asList(expected));
}
if (expected.length != actual.length) {
return; // Unequal-lengthed arrays are not equal.
}
List<Integer> unequalIlndices = new ArrayList<Integer>();
for (int i = 0; i < expected.length; i++) {
if (!MathUtil.equals(actual[i], expected[i], tolerance)) {
unequalIndices.add(i);

}
}
if (unequallndices.isEmpty()) {
failWithRawMessage(
"%s unexpectedly equal to %s.", getDisplaySubject(), Doubles.asList(expected));
}

} catch (ClassCastException ignored) {
// Unequal since they are of different types.

public void isNotEqualTo(Object expectedArray, double tolerance) {
double[] actual = getSubject();
try {
double[] expected = (double[]) expectedArray;
if (areEqual(actual,expected,tolerance)) {
failWithRawMessage (
"%s unexpectedly equal to %s.", getDisplaySubject(), Doubles.asList(expected));
}
} catch (ClassCastException ignored) {
// Unequal since they are of different types.
}
}
private boolean areEqual(double[] actual, double[] expected, double tolerance) {
if (actual == expected) return true;

if (expected.length != actual.length) return false;

return compareArrayContents(actual, expected, tolerance);
}
private boolean compareArrayContents(double[] actual, double[] expected,
double tolerance) {
List<Integer> unequalIlndices = new ArrayList<Integer>();
for (int i = 0; i < expected.length; i++) {
if (!MathUtil.equals(actual[i], expected[i], tolerance)) {
unequalIndices.add(i);
}
}

return unequallndices.isEmpty();

e bhases you will
encounter o o3

yuivalent mutants

o e

Conclusions

Mutation testing is a powerful

technigue

test cases

it finds

it provides a safely

refactoring your fests

It highlights ze

It can highlight cod

Run it as you dewe

Run it as you

Mot some time later

Not a number you need to make go up

Not a number you need to make go up
Or a stick to beat people with

Other languages

Ruby - Mutant

PHP - Humbug (now Infection)
Java - Pitest (could also try Major)
Kotlin - Pitest (with caveats)
Python - Cosmic Ray

LLVM (C, C++, Swift) - Mull
Javascript - Stryker

C# - Fettle

W @ pitest
http://pitest.org

turns out
it's me that guards the guards

g()to GOTO Copenhagen 2019

copenhagen Conference Nov. 18 - 20

QS

Remember to

rate this session
Thank you/

, Follow us"'@ ocph

