

Blank space needed here . . . just because

Hello

Blank space needed here . . . just because

Hello

?

Questions

How do I safely refactor my
tests?

How do I know if I can trust a
test suite I inherited?

How do I ensure the tests I’m
writing are effective?

How do I know if my team is
writing effective tests?

Really just one question

How do I assess the quality of a
test suite?

Common developer answers

That’s QA’s problem

I’m a Ninja Rockstar, I know my
tests are good

Better answers

I do TDD, I know my tests are
good.

• Are you sure?
• What about the tests you didn’t write?
• How do you test drive changes to your tests?
• Do you write tests for your tests?
• Do you write tests for the tests for your tests??

I do TDD, I know my tests are
good.

• Are you sure?

• What about the tests you didn’t write?
• How do you test drive changes to your tests?
• Do you write tests for your tests?
• Do you write tests for the tests for your tests??

I do TDD, I know my tests are
good.

• Are you sure?
• What about the tests you didn’t write?

• How do you test drive changes to your tests?
• Do you write tests for your tests?
• Do you write tests for the tests for your tests??

I do TDD, I know my tests are
good.

• Are you sure?
• What about the tests you didn’t write?
• How do you test drive changes to your tests?

• Do you write tests for your tests?
• Do you write tests for the tests for your tests??

I do TDD, I know my tests are
good.

• Are you sure?
• What about the tests you didn’t write?
• How do you test drive changes to your tests?
• Do you write tests for your tests?

• Do you write tests for the tests for your tests??

I do TDD, I know my tests are
good.

• Are you sure?
• What about the tests you didn’t write?
• How do you test drive changes to your tests?
• Do you write tests for your tests?
• Do you write tests for the tests for your tests??

Peer review

Good but …

• Catches problems inconsistently
• Labour intensive
• Slow form of feedback

Peer review
Good but …

• Catches problems inconsistently
• Labour intensive
• Slow form of feedback

Peer review
Good but …

• Catches problems inconsistently

• Labour intensive
• Slow form of feedback

Peer review
Good but …

• Catches problems inconsistently
• Labour intensive

• Slow form of feedback

Peer review
Good but …

• Catches problems inconsistently
• Labour intensive
• Slow form of feedback

Code coverage

Most Commonly one of :-

• Line
• Branch
• Statement

Code coverage
Most Commonly one of :-

• Line
• Branch
• Statement

Code coverage
Most Commonly one of :-

• Line

• Branch
• Statement

Code coverage
Most Commonly one of :-

• Line
• Branch

• Statement

Code coverage
Most Commonly one of :-

• Line
• Branch
• Statement

But there are many others

• Data
• Path
• Modified condition / decision
• more …

But there are many others

• Data

• Path
• Modified condition / decision
• more …

But there are many others

• Data
• Path

• Modified condition / decision
• more …

But there are many others

• Data
• Path
• Modified condition / decision

• more …

But there are many others

• Data
• Path
• Modified condition / decision
• more …

None of these of these coverage
measures tell you which parts of
your code have been tested

What code coverage does tell you

What code coverage does tell you

What code coverage does tell you

What code coverage does tell you

Executing code and testing code
are not the same thing

But most tests are written in
good faith

Code coverage tells you only
what has not been tested

So our answers aren’t that great

Back in 1971 Richard Lipton
provided a good answer to our
questions

decades before most people were writing unit tests.

Back in 1971 Richard Lipton
provided a good answer to our
questions
decades before most people were writing unit tests.

He wrote a paper entitled “Fault
diagnosis of computer programs”

If you want to know if a test
suite has properly checked some
code - introduce a bug

Then see if your test suite can
find it

Here’s a bug

public void count(int i) {
if (i > 10) {

count++;
}

}

Here’s a bug

public void count(int i) {
if (i > 10) { // changed >= to >

count++;
}

}

Our tests still pass

Our test suite is deficient

A test case is missing

@Test
public void shouldCountIntegersOfExactlyTen() {

testee.count(10);
assertEquals(1,testee.currentCount());

}

Some terminology

A change such as >= to > is a mutation operator
Lots are possible

• >= to <=
• >= to >
• >= to =
• foo.aMethod(); to //foo.aMethod();
• foo.aMethod(); to foo.anotherMethod();
• 0 to 1
• etc etc

Some terminology
A change such as >= to > is a mutation operator

Lots are possible

• >= to <=
• >= to >
• >= to =
• foo.aMethod(); to //foo.aMethod();
• foo.aMethod(); to foo.anotherMethod();
• 0 to 1
• etc etc

Some terminology
A change such as >= to > is a mutation operator
Lots are possible

• >= to <=

• >= to >
• >= to =
• foo.aMethod(); to //foo.aMethod();
• foo.aMethod(); to foo.anotherMethod();
• 0 to 1
• etc etc

Some terminology
A change such as >= to > is a mutation operator
Lots are possible

• >= to <=
• >= to >

• >= to =
• foo.aMethod(); to //foo.aMethod();
• foo.aMethod(); to foo.anotherMethod();
• 0 to 1
• etc etc

Some terminology
A change such as >= to > is a mutation operator
Lots are possible

• >= to <=
• >= to >
• >= to =

• foo.aMethod(); to //foo.aMethod();
• foo.aMethod(); to foo.anotherMethod();
• 0 to 1
• etc etc

Some terminology
A change such as >= to > is a mutation operator
Lots are possible

• >= to <=
• >= to >
• >= to =
• foo.aMethod(); to //foo.aMethod();

• foo.aMethod(); to foo.anotherMethod();
• 0 to 1
• etc etc

Some terminology
A change such as >= to > is a mutation operator
Lots are possible

• >= to <=
• >= to >
• >= to =
• foo.aMethod(); to //foo.aMethod();
• foo.aMethod(); to foo.anotherMethod();

• 0 to 1
• etc etc

Some terminology
A change such as >= to > is a mutation operator
Lots are possible

• >= to <=
• >= to >
• >= to =
• foo.aMethod(); to //foo.aMethod();
• foo.aMethod(); to foo.anotherMethod();
• 0 to 1

• etc etc

Some terminology
A change such as >= to > is a mutation operator
Lots are possible

• >= to <=
• >= to >
• >= to =
• foo.aMethod(); to //foo.aMethod();
• foo.aMethod(); to foo.anotherMethod();
• 0 to 1
• etc etc

Applying a mutation operator to
some code creates a mutant

We can create lots of mutants and we can do it automatically

Applying a mutation operator to
some code creates a mutant
We can create lots of mutants and we can do it automatically

If a mutant does not cause a test
to fail it survived

If a mutant does cause a test to
fail it was killed

So killing is good

If a mutant does cause a test to
fail it was killed
So killing is good

But what about this?
class Foo {

int min;
public void bar(int i) {

if (i < min) {
min = i;

}
System.out.println("" + min);

}
}

We can mutate it
class Foo {

int min;
public void bar(int i) {

if (i <= min) { // changed < to <=
min = i;

}
System.out.println("" + min);

}
}

But it still behaves the same

We can mutate it
class Foo {

int min;
public void bar(int i) {

if (i <= min) { // changed < to <=
min = i;

}
System.out.println("" + min);

}
}

But it still behaves the same

It is not possible to write a test
that kills this mutant

The mutant is said to be
equivalent

Equivalent mutants are
considered to be a problem

They need a human to examine them
We’ll talk more about them later

Equivalent mutants are
considered to be a problem
They need a human to examine them

We’ll talk more about them later

Equivalent mutants are
considered to be a problem
They need a human to examine them
We’ll talk more about them later

Mutation testing highlights code
that definitely is tested

It gives a very high degree of
confidence in a test suite

It effectively tests your tests

So you can refactor your tests without fear

It effectively tests your tests
So you can refactor your tests without fear

So what happened to this idea?

1971 - Lipton’s paper

Just 9 short years later

The first automated tool!

Just 9 short years later
The first automated tool!

Lots of research papers

If your test suite can find
artificial bugs, can it find real
ones?

The competent programmer
hypothesis

“Programmers are generally competent enough to produce code that
is at least almost right”

The competent programmer
hypothesis
“Programmers are generally competent enough to produce code that
is at least almost right”

The competent programmer
hypothesis
“Programmers are generally competent enough to produce code that
is at least almost right”

Mutation testing introduces
small changes to the code

So the mutants look like bugs from our “competent” programmer

Mutation testing introduces
small changes to the code
So the mutants look like bugs from our “competent” programmer

Some real bugs do look like this

But others are more complex

Some real bugs do look like this
But others are more complex

The coupling effect

“Tests that can distinguish a program differing from a correct one by
only simple errors can also implicitly distinguish more complex
errors”

The coupling effect
“Tests that can distinguish a program differing from a correct one by
only simple errors can also implicitly distinguish more complex
errors”

There is strong empirical
support

“The major conclusion from this investigation is that by explicitly
testing for simple faults, we are also implicitly testing for more
complicated faults” 1

1A. Offutt. 1989. The coupling effect: fact or fiction. In Proceedings of the ACM
SIGSOFT ’89 third symposium on Software testing, analysis, and verification

There is strong empirical
support
“The major conclusion from this investigation is that by explicitly
testing for simple faults, we are also implicitly testing for more
complicated faults” 1

1A. Offutt. 1989. The coupling effect: fact or fiction. In Proceedings of the ACM
SIGSOFT ’89 third symposium on Software testing, analysis, and verification

But this is just a probabilistic
statement

You will find counter examples

But this is just a probabilistic
statement
You will find counter examples

So if your tests find mutants,
they will probably find real bugs

A few more academic tools

Jester

“Why just think your tests are good when you can know for sure?
Sometimes Jester tells me my tests are airtight, but sometimes the
changes it finds come as a bolt out of the blue. Highly
recommended.”

Kent Beck

No-body used it

Lots more research papers

2019

In daily use all over the world
Folk keep talking about it at conferences

2019
In daily use all over the world

Folk keep talking about it at conferences

2019
In daily use all over the world
Folk keep talking about it at conferences

High profile projects

But mainly “normal” code

• Recruitment websites
• Tractor sales
• Insurance
• Banking
• Biotech
• Media

But mainly “normal” code

• Recruitment websites
• Tractor sales
• Insurance
• Banking
• Biotech
• Media

So what happened?

40 years of research suggested
there were two fundamental
problems

1. Too slow

2. Equivalent mutants

Too slow

• Need to compile the code thousands of times
• Need to run the test suite thousands of times

Too slow
• Need to compile the code thousands of times

• Need to run the test suite thousands of times

Too slow
• Need to compile the code thousands of times
• Need to run the test suite thousands of times

Joda Time

A small library for dealing with dates and times.

• 68k lines of code
• 70k lines of test code
• Takes about 10 seconds to compile
• Takes about 16 seconds to run the unit tests

Joda Time
A small library for dealing with dates and times.

• 68k lines of code
• 70k lines of test code
• Takes about 10 seconds to compile
• Takes about 16 seconds to run the unit tests

Joda Time
A small library for dealing with dates and times.

• 68k lines of code

• 70k lines of test code
• Takes about 10 seconds to compile
• Takes about 16 seconds to run the unit tests

Joda Time
A small library for dealing with dates and times.

• 68k lines of code
• 70k lines of test code

• Takes about 10 seconds to compile
• Takes about 16 seconds to run the unit tests

Joda Time
A small library for dealing with dates and times.

• 68k lines of code
• 70k lines of test code
• Takes about 10 seconds to compile

• Takes about 16 seconds to run the unit tests

Joda Time
A small library for dealing with dates and times.

• 68k lines of code
• 70k lines of test code
• Takes about 10 seconds to compile
• Takes about 16 seconds to run the unit tests

Lets say we have 10k mutants

(100000)
compile

(160000)
test

+ +

260000
seconds

72 hours

3 days!

So in theory mutation testing is
wildly impractical

I didn’t understand this

So I tried to build a mutation testing tool

I didn’t understand this
So I tried to build a mutation testing tool

Blank space needed here . . . just because

Live demo time

A tiny assertion library from
Google

About 3000 lines of code

Takes about 3 seconds to compile

Takes about 7 seconds to run the
tests

Has about 90% line coverage

If we generated a modest 700
mutants

Would take about 2 hours

Lets try it

mvn -Ppitest test

So why didn’t that take 2 hours?

Lots of reasons

It runs in parallel

Mutation testing is embarrassingly parallelisable
Most machines these days have at least 2 cores
2 cores = half the time

It runs in parallel
Mutation testing is embarrassingly parallelisable

Most machines these days have at least 2 cores
2 cores = half the time

It runs in parallel
Mutation testing is embarrassingly parallelisable
Most machines these days have at least 2 cores

2 cores = half the time

It runs in parallel
Mutation testing is embarrassingly parallelisable
Most machines these days have at least 2 cores
2 cores = half the time

No compilation cycles

Mutants created by bytecode manipulation
Can generate hundreds of thousands in <1 second

No compilation cycles
Mutants created by bytecode manipulation

Can generate hundreds of thousands in <1 second

No compilation cycles
Mutants created by bytecode manipulation
Can generate hundreds of thousands in <1 second

Test prioritisation

Run the cheap tests first, the expensive ones later
stop when one fails

Test prioritisation
Run the cheap tests first, the expensive ones later

stop when one fails

Test prioritisation
Run the cheap tests first, the expensive ones later
stop when one fails

Test selection
Pitest gathers per test line coverage data

Tests are only run against a mutant if they exercise the mutated line
of code

Test selection
Pitest gathers per test line coverage data
Tests are only run against a mutant if they exercise the mutated line
of code

This makes a huge difference

shouldNotCountIntegersBelowTen

shouldCountIntegersAboveTen

shouldNotCountIntegersBelowTen

shouldCountIntegersAboveTen

shouldNotCountIntegersBelowTen

shouldStartWithEmptyCount

>

• We will only run 2 tests for the mutation on line 5
• The mutation will survive as we’re missing an effective test case

>

• We will only run 2 tests for the mutation on line 5

• The mutation will survive as we’re missing an effective test case

>

• We will only run 2 tests for the mutation on line 5
• The mutation will survive as we’re missing an effective test case

//

• We will run only 1 test for the mutation on line 6
• The mutation will be killed

//

• We will run only 1 test for the mutation on line 6

• The mutation will be killed

//

• We will run only 1 test for the mutation on line 6
• The mutation will be killed

1

• We will run no tests for the mutation on line 11
• The mutation will be instantly marked as survived
• This is makes a huge different

1

• We will run no tests for the mutation on line 11

• The mutation will be instantly marked as survived
• This is makes a huge different

1

• We will run no tests for the mutation on line 11
• The mutation will be instantly marked as survived

• This is makes a huge different

1

• We will run no tests for the mutation on line 11
• The mutation will be instantly marked as survived
• This is makes a huge different

To analyse JodaTime

• 8 minutes on cheap dual core laptop
• 3 minutes on a quad core

That’s over 1000 times faster than early systems

To analyse JodaTime

• 8 minutes on cheap dual core laptop

• 3 minutes on a quad core

That’s over 1000 times faster than early systems

To analyse JodaTime

• 8 minutes on cheap dual core laptop
• 3 minutes on a quad core

That’s over 1000 times faster than early systems

To analyse JodaTime

• 8 minutes on cheap dual core laptop
• 3 minutes on a quad core

That’s over 1000 times faster than early systems

To analyse JodaTime

• 8 minutes on cheap dual core laptop
• 3 minutes on a quad core

That’s over 1000 times faster than early systems

But what about big codebases?

Turns out size doesn’t matter

To understand why we need to
talk about what mutation testing
is useful for

and how to use it

To understand why we need to
talk about what mutation testing
is useful for
and how to use it

A lot of the research assumed it
had to work like this

Write a
bunch of code

and tests

Pass it to a QA
team to mutation test

Many developers assume you
use it like this

Write a
bunch of code

and tests

Write a
bunch of code

and tests

 Mutation test

overnight on a server

Write a
bunch of code

and tests

Brag about the
size of your metric

Mutation test
overnight on a server

But I only ever use it like this

Write a
failing
test

Make the
test pass

Refactor Mutation test
affected code

Or sometimes

Spike out
code

Write tests

fix the mess
Mutation test
affected code

I’d be too scared to do this
without mutation testing

I only have to analyse a small
slice of the code

It doesn’t matter how big the
codebase is

The slice is always small

Pitest integrates with version
control

But often I just target it at a certain package

Pitest integrates with version
control
But often I just target it at a certain package

Mutation testing is a powerful
tool

I don’t use it as a metric

I don’t care what the code
coverage of a project is

I don’t care what the mutation
score for a project is

I care about the feedback it gives
me

And the actions it prompts me to
take

Equivalent mutants

Research suggests it takes 15
minutes to assess if a mutant is
equivalent

But this assumes that the person
assessing hasn’t just written the
code

It’s much less effort as part of a development feedback loop

But this assumes that the person
assessing hasn’t just written the
code
It’s much less effort as part of a development feedback loop

But they can provide useful
information for a developer

They’re a side benefit

But they can provide useful
information for a developer
They’re a side benefit

If a mutant survives I do one of
three things

Add a test

Or sometimes fix a buggy test

Add a test
Or sometimes fix a buggy test

Delete some code

Re-express some code

Some examples

public void someLogic(int i) {
if (i <= 100) {

throw new IllegalArgumentException();
}

if (i > 100) {
doSomething();

}
}

public void someLogic(int i) {
if (i <= 100) {

throw new IllegalArgumentException();
}

if (i >= 100) { // mutated > to >=
doSomething();

}
}

i can never be 100 at this point

So the mutant is equivalent

public void someLogic(int i) {
if (i <= 100) {

throw new IllegalArgumentException();
}

if (i >= 100) { // mutated > to >=
doSomething();

}
}

i can never be 100 at this point

So the mutant is equivalent

public void someLogic(int i) {
if (i <= 100) {

throw new IllegalArgumentException();
}

if (i >= 100) { // mutated > to >=
doSomething();

}
}

i can never be 100 at this point

So the mutant is equivalent

The code is redundant

public void someLogic(int i) {
if (i <= 100) {

throw new IllegalArgumentException();
}

doSomething();
}

Functionally equivalent but there’s less of it

public void someLogic(int i) {
if (i <= 100) {

throw new IllegalArgumentException();
}

doSomething();
}

Functionally equivalent but there’s less of it

Mutation testing is really good at
highlighting redundant code

class Foo {
int min;
public void bar(int i) {

if (i < min) {
min = i;

}
System.out.println("" + min);

}
}

class Foo {
int min;
public void bar(int i) {

if (i <= min) { // mutate < to <=
min = i;

}
System.out.println("" + min);

}
}

A classic logically equivalent
mutant

We can make it go away

A classic logically equivalent
mutant
We can make it go away

class Foo {
int min;
public void bar(int i) {

min = Math.min(i, min);
System.out.println("" + min);

}
}

The code now expresses its intent

class Foo {
int min;
public void bar(int i) {

min = Math.min(i, min);
System.out.println("" + min);

}
}

The code now expresses its intent

So sometimes equivalent mutants
prompt us to improve the code

Mutation testing creates pressure
to

• Reduce the amount of code
• Reduce the amount of duplication

Mutation testing creates pressure
to

• Reduce the amount of code

• Reduce the amount of duplication

Mutation testing creates pressure
to

• Reduce the amount of code
• Reduce the amount of duplication

Many equivalent mutants affect
only performance

(performance is not a concern of unit testing)

Many equivalent mutants affect
only performance
(performance is not a concern of unit testing)

Is it a premature optimisation?

• Yes - delete the code
• No - ignore the mutant

Is it a premature optimisation?

• Yes - delete the code

• No - ignore the mutant

Is it a premature optimisation?

• Yes - delete the code
• No - ignore the mutant

What did pitest find in Google
Truth?

Some classic test errors

PrimitiveIntSubjectArray

PrimitiveIntSubjectArray

Mutant is covered by at least one
test

Mutant is covered by at least one
test

An equivalent mutation

PrimitiveDoubleArraySubject

PrimitiveDoubleArraySubject

PrimitiveDoubleArraySubject

Performance isn’t unit testable

Optimisation makes sense in this case

Performance isn’t unit testable
Optimisation makes sense in this case

In many code bases you will
encounter no equivalent mutants

Seems to depend on the domain
and code style

Conclusions

Mutation testing is a powerful
technique

It finds missing test cases

It finds buggy tests

It provides a safety net while
refactoring your tests

It highlights redundant code

It can highlight code smells

Run it as you develop

Not some time later

Run it as you develop
Not some time later

Remember it’s a tool

Not a number you need to make go up
Or a stick to beat people with

Remember it’s a tool
Not a number you need to make go up

Or a stick to beat people with

Remember it’s a tool
Not a number you need to make go up
Or a stick to beat people with

Other languages

• Ruby - Mutant
• PHP - Humbug (now Infection)
• Java - Pitest (could also try Major)
• Kotlin - Pitest (with caveats)
• Python - Cosmic Ray
• LLVM (C, C++, Swift) - Mull
• Javascript - Stryker
• C# - Fettle

@_pitest

http://pitest.org
turns out

it's me that guards the guards

